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Abstract. (Multi-)relational regression consists of predicting continu-
ous response of target objects called reference objects by taking into
account interactions with other objects called task-relevant objects. In re-
lational databases, reference objects and task-relevant objects are stored
in distinct data relations. Interactions between objects are expressed
by means of (many-to-one) foreign key constraints which may allow
linking explanatory variables of a task-relevant object in several
alternative ways to the response variable. By materializing multiple as-
signments in distinct attribute-value vectors, a reference object is repre-
sented as a bag of multiple instances, although there is only one response
value for the entire bag. This works points out the same assumption of
multi-instance learning that is a primary instance is responsible for the
observed response value of a reference object. We propose a top-down
induction multi-relational model tree system which navigates foreign key
constraints according to a divide-and-conquer strategy, derives a repre-
sentation of reference objects as bags of attribute-value vectors and then,
for each bag, constructs a primary instance as main responsible of the
response value. Coefficients of local hyperplane are estimated in an EM
implementation of the stepwise least square regression. Experiments con-
firm the improved accuracy of our proposal with respect to traditional
attribute-value and relational model tree learners.

1 Introduction

Regression has received significant attention in supervised learning, where train-
ing data consist of observations of an unknown continuous function f , and the
learning task is to learn a general model g that is close to f on training data
and can be subsequently used to reliably predict on new unlabeled observations.
Although regression task is most popular with attribute-value learning, several
extensions have already been investigated in multi-relational data mining [11],
where data is expected to be spread in several database relations.

Handling relational data adds significant difficulties to the regression task
since data stored in distinct database relations describe objects of different type.
These objects play different roles, and it is necessary to distinguish between the
reference (or target) objects, which are the main subject of analysis, and the task-
relevant objects (or non-target objects), which are related to the former and can
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contribute to account for the variation. The response variable of a regression
model is a continuous property of the reference objects, while the explanatory
variables of the model can be associated to both reference and task-relevant ob-
jects. Foreign key constraints model “many-to-one” relationships according to
which several task-relevant objects may be associated to the same reference ob-
ject (non-determinacy) [15]. Since explanatory variables of task-relevant objects,
namely non-determinate variables, can be linked to the response variable in sev-
eral alternative ways, it is necessary to establish how the response value should be
estimated due to the multiple instances that are possible for one reference object
when taking into account the task-relevant objects. Deriving multi-instance data
for a reference object boils down multi-relational regression to a generalization
of the multi-instance learning.

Multi-instance learning was firstly defined in [6] to deal with predictive tasks
where training data consist of bags of several instances and the response value
is assigned to the entire bag. In the original proposal, all instances, which are
represented by attribute-value vectors, are used for training. However, in many
cases not all instances are responsible for the observed value, thus aggravating
problems due to noisy and irrelevant observations. To overcome these limita-
tions, several regression methods developed in multi-instance settings base their
prediction on only one (or few) instance(s) of the bag. The validity of these
methods has been empirically proved in several applications ranging from drug
design [6] to invitro fertilization [19] and image analysis [16].

In this work, we follow the same approach to solve the multi-instance learning
problem generated from multi-relational data, and we base the prediction on the
primary instance (or prototype) selected for each reference object. In particu-
lar, we propose a novel multi-relational learner, called MIRT (Multi Instance
Relation model T ree Induction), which follows a multi-instance approach to
learning regression models from multi-relational data. MIRT works under the
common hypothesis that the underlying function f is a linear model with Gaus-
sian noise on the value of the response variable. To avoid the a priori definition
of a global form for the regression function [13], the function f is approximated
by means of a tree-structured regression model, called model tree. This is built
by recursively partitioning the set of reference objects according to a computa-
tionally efficient divide-and-conquer search strategy. An internal node can either
perform a binary test on some explanatory variable or instantiate a new relation
on the basis of some foreign key constraint, while a leaf is tagged with a multiple
linear function (or hyperplane) g built over a multi-instance representation of
the reference objects at the leaf.

Our proposal permits to compute simultaneously both primary instances and
regression coefficients together by means of Expectation Maximization (EM)
algorithm which minimizes the least square error of a multiple linear function
learned in a stepwise fashion [8]. In this way, the final relational model tree
reveals local linear dependences between response variable and explanatory ones
without suffering of the presence of noise and outliers. The tree can then be
used to predict the unknown response of any new reference object (test), whose
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primary instance is constructed by choosing the binding of the non-determinate
variables involved in the local g that minimizes the Euclidean distance from the
training primary instances stored in the leaf.

The paper is organized as follows. In the next Section, we discuss background
and motivations of this work. The learning problem is formally defined in Section
3. In Section 4, we present a novel method that enriches the top-down induction
of a relational model tree with an EM iterative approach to compute primary
instances and regression coefficients. Lastly, experimental results are reported in
Section 5 and some conclusions are drawn.

2 Background and Motivation

Related research on regression in multi-relational data mining and multi-instance
learning are reported below.

2.1 Background in Multi-relational Data Mining

Multi-relational data mining methods for regression can be classified into two
alternatives: propositional and structural (or relational).

The propositional approach constructs features which capture relational prop-
erties of data and transforms original relational data into a single attribute-value
representation. The non-determinacy issue is dealt with by deriving boolean fea-
tures (e.g. there exists at least a molecule conformation that includes an atom
with charge greater than 2.5) or aggregate features (the average charge of atoms
involved in the conformations of the same molecule). The resulting representa-
tion can then be input to a wide range of robust and well-known conventional
regression methods which operate on an attribute-value single instance repre-
sentation [12].

The structural approach provides functionalities to navigate relational struc-
tures in its original format and to generate potentially new forms of evidence
not readily available in a flattened single table representation. The whole hy-
pothesis space is directly explored by the mining method. Structural regression
methods [14,2,1,22,9] are generally obtained by upgrading propositional learn-
ers, e.g. regression trees and model trees, to the multi-relational setting. Al-
though several of these methods assume that the function underlying data is
a (local) hyperplane, only few of them [1,22] allow regression functions which
include non-determinate explanatory variables. These methods use the several
instances of a reference object in training and employ aggregate functions af-
ter or before learning coefficients of local hyperplanes. In [1], multiple instances
are dealt as separate instances and coefficients of hyperplane are computed by
solving least square regression in the derived single instance learning. Multiple
predictions derived for the same reference object are aggregated by resorting to
the average function. In [22], user-defined aggregate functions allow to aggre-
gate a non-determinate variable before adding the variable to the linear model,
thus avoiding the problem of multiple predictions. Anyway the use of aggregates
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may suffer from problems of information loss and statistical significance when
in presence of noise or outliers.

2.2 Background in Multi-instance Learning

Although multi-instance learning was initially defined for classification [6], some
regression methods have been developed for the multi-instance setting.

A seminal work is in [18], where Ray and Page have assumed that the function
f underlying multi-instance data is a linear model and there is one instance for
each bag that is the main responsible of the real-valued response value. They have
proposed an EM-based iterative method to determine primary instances and
regression coefficients of the hyperplane that minimizes the least square error.
Regression coefficient are computed for all explanatory variables. The hyperplane
can then be used to predict the unknown response of a new object represented by
a bag of multiple instances. The problem of determining the test primary instance
is naively solved by selecting the first instance stored in the bag. Zhang and
GoldmanIn [23] have combined the EM algorithm with a diverse density based
algorithm. A two-step gradient ascent search of the standard diverse density
algorithm is used to select the primary instances which maximize diverse density
value. Dooly et al. [7] have proposed a multiple-instance variant of unweighted
k-NN in which the distance between bags is defined as the minimum Euclidean
distance between points in the two bags. The regression method investigated in
[5] bypasses the problem of choosing a primary instance by computing a nonlinear
weighted average of all response values. However, this is justified by the specific
task of predicting the molecule activity. A gradient-based optimization procedure
is used to determine the best linear model.

The multi-instance approach to relational regression task has also been con-
sidered in multi-relational data mining. Srinivasan and Camacho [20] have firstly
recognized the multi-instance nature of a relational regression task when learn-
ing relational clauses. However no solution was proposed for the issue of binding
those non-determinate variables which are the responsible for a response value.
Several bindings are either treated as data points for regression analysis or are
grouped in a single aggregated value. An important contribution to interpret-
ing multi-relational data mining problems as multi-instance learning problems
comes from Blockeel et al. [3], who have upgraded decision tree learning to the
multi-instance framework in ILP.

3 Problem Statement: Relational vs. Multi-instance

The relational regression task can be formally defined as follows:

Given:

1. a set S of reference objects, that is, the target objects of the analysis;
2. some sets Ri of task-relevant objects;
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3. a set I of interactions between reference objects and/or task-relevant objects;
4. a response value y ∈ R which tags each reference object in S and assumes

value according to an unknown function f : 〈S,
⋃

Ri, I〉 → R.

Find a function g that is hopefully close to f on the domain 〈S,
⋃

Ri, I〉.

The set S is stored in one data relation (namely target table) of a relational
database D, i.e. one tuple for each reference object. Similarly, each set Ri is
stored in a distinct data relation of D (one table for each object type). The
interactions I are expressed by the foreign key constraints (FK) which state
how tuples in one data relation relate to tuples in another relation. Foreign key
constraints FK allow navigating D and retrieving all the task-relevant objects
which are related to a reference object and thus potentially relevant to predict
the value of Y . The definition of the task-relevant objects which are related to
a reference object according to a foreign key path is formally provided in the
following.

Definition 1. A task-relevant object tro ∈ Ri is related to a reference object
ro ∈ S if and only if:

1. there exists a foreign key constraint fk ∈ FK from Ri to S (or vice-versa)
such that the foreign key of tro assumes the same value of the primary key
of ro (or vice-versa), or

2. there exists a task-relevant object newTro ∈ Rj such that newTro is related
to ro and there exists a foreign key constraint fk from Rj to Ri (or vice-
versa) such that the foreign key of newTro assumes the same value of the
primary key of tro (or vice-versa).

The sequence of foreign key constraints fkp = 〈fk1, . . . , fkn〉 according to a
task-relevant object is related to a reference object is called foreign key path.

A foreign key path provides the schema of the attribute-value vectors which can
be constructed by performing the natural join between data relations involved in
the foreign key path and projecting over the explanatory variables. Grouping the
attribute-value vectors referring to the same reference object allows to represent
a reference object as a bag of multiple attribute-value vectors. In this case, the
difference with the original formulation of a multi-instance task is that a rela-
tional bag may include attribute-value vectors with different attribute schema
(one schema for each foreign key path). Independently from this difference, the
multi-instance form of relational data poses the same difficulties due to noise
and presence of irrelevant instances as traditional multi-instance data. This mo-
tivates our focus on the problem of selecting the main responsible of the response
values. This attempt corresponds to reformulate the relational regression goal as
follows:

Find (i) the primary instance of each reference object by choosing the best
binding for non-determinate variables of possibly related task-relevant object, and
(ii) a regression function g that is hopefully close to f on the retrieved primary
instances.
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4 Multi-instance Induction of Relational Model Trees

MIRT induces a multi-relational model tree by recursively partitioning the ref-
erence objects stored in the target table of a relational database and associating
different hyperplanes to the separate partitions. Partitioning takes into account
the relational arrangement of task-relevant objects stored in the same relational
database. Each hyperplane is a linear combination of a subset of the explana-
tory variables belonging to several data relations in the splitting tests along the
unique tree path connecting the root to the leaf.

The approach adopted to estimate the regression coefficients is where MIRT
differs from the state-of-art relational model tree learners. MIRT neither resorts
to aggregate nor considers multiple binding values as separate instances, but it
minimizes the least square error over the primary instances constructed from
the training attribute-value vectors falling in the leaf. Under the restriction that
only the attribute-value vectors which satisfy the intensional description of the
partition at hand are constructed, the primary instances are obtained in an EM-
based formulation of the stepwise regression that i) chooses at each step the best
explanatory variable to be introduced in the hyperplane, ii) identifies the best
binding for this variable among the possible ones in the bag iii) uses these best
bindings to compute an estimate of the regression coefficient of this variable in
the hyperplane. The primary instances constructed in the training are stored in
each leaf in order to provide a baseline to construct the primary instance of an
unknown reference object and then to predict its unknown response value.

Details of the relational tree induction, the EM based implementation of multi-
instance stepwise regression and the prediction of unknown reference objects are
reported in the next sub Sections.

4.1 Relational Tree Induction

The construction of the tree proceeds top-down. It starts with a root node t0
with is associated with the entire set of training reference objects and recursively
proceeds by choosing from either:

– growing the tree by performing a splitting test on the current node t and
introducing the nodes tL (left child of t) and tR (right child of t) or

– stopping the tree’s growth at the current node t and then associating an
hyperplane at t.

At each node, the splitting test is chosen by minimizing the average standard
deviation of response value [4]. Coherently with the semantics of a relational
tree defined in [2], a variable that is introduced in the splitting test (i.e. this
variable does not occur in the higher splitting tests of the tree) must not occur
in the negation of the splitting test. This restriction is required to guarantee the
mutually exclusivity when partitioning reference objects according to the test
conditions which may involve several data relations.

A splitting test may either be a foreign key test or an attribute test. A foreign
key test is a binary test to partition reference objects according to the existence of
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a non empty relationship between data relations involved in one or more foreign
key constraints. This corresponds to perform natural joins between relations
involved in the foreign key path associated to the unique tree path connecting
the root to the node and relations introduced with the foreign key test. Due
to the complexity of computing natural joins, MIRT imposes that a foreign key
between two data relations can be introduced at most once in this unique path.
The foreign key constraints are selected from the relational database under the
restriction that the resulting foreign key path must satisfy the linkedness. This
corresponds to consider only foreign key constraints, where either the foreign
key or the primary key belong to one data relation already involved in a test
along the corresponding tree path from the root to the node.

Example 1. An example of splitting test which employs a foreign key condition
(from atom to molecule) to partition the entire set of molecules:

molecule(I, L, M)
| − −(yes)[molecule(I, L, M),atom(A,M,C) ]
| | − − ...
| − −(no) [molecule(I,L,M), not(molecule(I,L,M),atom(A,M,C))] ...

An attribute test is a test involving a boolean condition on an attribute X . X is
neither a primary key nor a foreign key and X belongs to one of the data relations
added to the tree by means of a foreign key condition. if X is continuous, the
binary test is in the form X ≤ α with α one of the points found on range of X
in partition at hand, while if X is a discrete variable, the binary test is in the
form X ∈ {α1, . . . , αs}, where {α1, . . . , αs} ⊂ SX and SX is the set of distinct
values of X in the partition in hand. MIRT starts with an empty set LeftX = �
and a full set RightX = SX . It moves one element from RightX to LeftX , such
that the move results in a better split.

Example 2. An example of splitting test which employs an attribute condition
(Charge) to partition the set of molecules which have at least one atom related
according to the foreign key constraint from atom to molecule:

molecule(I, L, M)
| − −(yes)[molecule(I, L, M),atom(A,M,C) ]
| | − − (yes)[molecule(I,L,M),atom(A,M,C), C≤2.3]
| | − − ...
| | − − (no)[molecule(I,L,M),atom(A,M,C),not(

molecule(I,L,M),atom(A,M,C), C≤2.3) ]
| | − − ...
| − −(no) [molecule(I,L,M), not(molecule(I,L, M),atom(A,M,C))] ...

In addition to foreign key test and attribute test, MIRT can perform a test which
combines one or more foreign key conditions with one attribute condition.

Example 3. An example of a splitting test which employs simultaneously a for-
eign key condition (from atom to molecule) and an attribute condition (Charge)
to partition the entire set of molecules.
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molecule(I, L, M)
| − −(yes)[molecule(I,L,M),atom(A,M,C), C≤2.3]
| | − − ...
| − −(no) [molecule(I,L,M),not(molecule(I,L,M),atom(A,M,C),C≤2.3)]
| | − − ...

The tree construction is stopped when either the number of reference objects in
a node is less than a minimum value or the coefficient of determination is greater
than a threshold. The coefficient of determination estimates the strength of the
relationship between the average response values on partition at hand and the
average response values on the entire training set.

4.2 Multi-instance Stepwise Regression

A local hyperplane y = bx at a leaf node is learned to be close to f on the primary
instances constructed for the training reference objects falling in the partition at
hand. Primary instances are constructed by fixing one binding among the pos-
sible several ones of the (non-determinate) variables involved in the hyperplane
and b is determined by minimizing the least square error (L) on the primary
instances. The hyperplane construction starts from representing each training
reference object i falling in the partition at hand as a bag Bi of mi attribute-
value vectors (instances). Each instance j of Bi is described by the real valued
vector xij which includes values of the continuous explanatory variables Xi from
the data relations in the foreign key conditions along the tree path from the root
to the leaf under analysis. The multiple instances of Bi are only those instances
which satisfy the conjunction of test conditions for the reference object i. An
example of the construction of the bag of attribute-value vectors which describe
a reference object falling in a leaf is reported in Example 4.

Example 4. Let us consider:
1. a database schema which includes the data relations

Molecule(MolId, LogP and Muta)
Atom(Atomid, MolId, Charge)
Bond(BondId, AtomId1, AtomId2, Type)

2. an instance of this database which collects the tuples:
molecule(m1, 12, 5.1). molecule(m2, 2, 10.1).
atom(a1, m1, 2.3). atom(a2, m1, 2.5). atom(a4, m1, -0.5). atom(a5, m2, 5.1).
bond(b1, a1, a2, 5). bond(b2, a1, a2, 2). bond(b3, a1, a3, 1).
bond(b4, a5, a6, 2). bond(b5, a6, a5, 1).

3. a relational tree that partitions molecules according to atoms and bond is the
following:

1. molecule(I, L, M)
2. | − −(yes)[molecule(I, L, M),atom(A,M,C) ]
3. | | − − (yes)[molecule(I,L,M),atom(A,M,C), C≤2.3]
4. | |−− (yes)[molecule(I,L,M),atom(A,M,C), C≤2.3, bond(B,A,A2,T]
5. | | − − (no) ...
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6. | | − − (no)...
7. | − −(no) ...

m1 satisfies the conjunction of binary conditions along the path from the node
1 to the node 4, that is, at least one atom with a charge less or equal to 2.3
belongs to m1 and this atom is involved in at least one bond. The intensional
description provided by the tree at this node can be expressed as the query:

m1(L, C, T) :- molecule(m1,L,Y), atom(M,A,C), C≤2.3, bond(B,A,K,T)
According to the query reported above m1 is mapped into the bag attribute-
value vectors 〈12, 2.3, 5〉 〈12, 2.3, 2〉 〈12, 2.3, 1〉 and the entire bag is assigned
to the response value 5.1.

After constructing the multiple attribute-value vectors which represent each ref-
erence object falling in the leaf, primary instances and regression coefficients are
computed within an EM algorithm that aims at minimizing the least square er-
ror of the hyperplane on the training primary instances constructed at the leaf.
The hyperplane is built stepwise by sequencing straight line regressions and re-
moving the linear effect of the introduced variables each time a new explanatory
variable (regression term) is added to the model. The selection of this best term
is based on the strength of the resulting least square error on the chosen primary
values for Xi. Basics of stepwise construction are provided in Example 5.

Example 5. Suppose we are interested in analyzing a response variable Y in a
region R of a feature space described by two continuous explanatory variables X1
and X2. In the stepwise construction of a regression model, the initial regression
model is approximated by regressing on X1 for the whole region R, that is
Ŷ = â0 + b̂0X1. As explained in [8], the correct procedure to follow in order to
introduce the effect of another variable in the partially constructed regression
model is to eliminate the effect of X1. In practice, we have to compute the
regression model for the whole region R, that is, X̂2 = â20 + b̂21X1 and to
compute the residuals X ′

2 = X2 − X̂2 and Y ′ = Y − Ŷ = Y − (â0 + b̂0X1).
Finally by regressing Y ′ on X ′

2 alone Y ′ = β̂03 + β̂13X
′
2 and substituting the

equations of X ′
2 and Y ′ in the last equation we obtain:

Y − (β̂01 + β̂11X1) = β̂03 + β̂13(X2 − (β̂02 + β̂12X1)).
that is, Y = (β̂03 + β̂11 − β̂02β13) + (β̂11 − β̂12 β̂13)X1 + β̂13X2.

For each bag, the primary value corresponding to the variable to be added to the
hyperplane is chosen within the EM implementation described in Algorithm 1.
Each time a new variable is added to the hyperplane, primary values of this vari-
able are definitely assigned to the values (I) chosen in the E step. The algorithm
starts with an initial random guess (IR) at the hypothesis which is iteratively
refined. Each iteration consists in two main steps. In the E step, a binding of
Xi is selected from each bag to obtain an hypothesis with least square error
(L-error) with respect to the current best guess at the correct hypothesis. In the
M step, the current guess of the hypothesis is refined by using linear regression
to construct a new regression model from the instances provided at the previous
step. The new hyperplane is constructed by determining the coefficient of the



Top-Down Induction of Relational Model Trees in Multi-instance Learning 33

Algorithm 1. EM based selection of regression coefficients and primary values
1: Input: (1) the vector B of n bags bi, where the bag bi includes the values xi1, . . . xim

for the continuous explanatory variable X, (2) the list L of the explanatory vari-
ables already included in the hyperplane, (3) the vector P ′ of the residuals of the
primary instances constructed from the explanatory variables already included in
the hyperplane, (4) a vector Y ′ of the residuals of the response values.

2: Output: (1) the regression coefficient of a straight-line regression between Y’ and
residual of X’, (2) the vector I of n primary values of X, one for each bag in B

3: function EM(in : B, L, P ′, Y ′; out : b, I);
4: globalL:=MAX;
5: for r=1, . . . ,R do
6: assign randomly the primary instances to IR and determine residuals IR’ by

removing the effect of variables in L;
7: determine the regression coefficient b over IR’;
8: bestL=MAX; currentL=0; found=true;
9: while found do

10: IC:=� ; currentL:=0;
11: for each bi in B do
12: Let xij be the instance value in bi that minimizes L(y′

i, x
′
ij , b)}; /* x′

ij is the
residual of xij */

13: IC = IC ∪ xij ; currentL:=currentL+ L(y′
i, x

′
ij , b

′);
14: end for
15: if currentL≥bestL then
16: found:=false;
17: else
18: bestL:=currentL; bR:=b; IR:=IC;
19: perform linear regression over IC to obtain b
20: end if
21: end while
22: if bestL<globalL then
23: globalL:=bestL; b:=bR; I:=IR
24: end if
25: end for
26: return 〈b,I〉

straight-line regression between the residual of Y and the residual of Xi. Both
residuals are computed in a stepwise fashion by iteratively removing the effect
of the already performed steps of regression. The coefficients of the (sequence
of) straight-line regressions (e.g. â20 and b̂21 in Example 5) to determine the
residual values involved in an EM step are computed over the primary instances
which have already been constructed within the stepwise construction of the hy-
perplane. EM steps are repeated until the algorithm converges. Due to the fact
that the result of any EM run may be influenced by the initial random hypoth-
esis, it is run several times on the same data collection using random restarts.
In Algorithm 1, R is the number of random restarts to be used.

After selecting the variable to be added to the hyperplane, the contribution of
this term is evaluated according to the F-test and eventually dropped whenever
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it is not statistically significant. In this last case, the addition of any other
candidate cannot be statistically significant, hence the hyperplane construction
can be stopped. In this way, MIRT integrates a mechanism of variable sub-
selection as a part of the hyperplane construction, thus solving possible problems
of collinearity [8]. If no variable is added to the hyperplane, the prediction at
the leaf is simply performed by means of the mean of the response values of
the reference objects falling in the leaf. Primary instances constructed within
the EM based stepwise construction of the hyperplane are stored at the leaves
and are subsequently used to determine the primary instance when an unknown
reference object has to be predicted.

An example of the stepwise construction of an hyperplane according to Algo-
rithm 1 is provided in Example 6

Example 6. Let us consider the molecules m1, m2 and m3 described according
to the atoms a1, a2, a3, a4, a5, a6 and a7. Each molecule consists of a bag of
attribute-value vectors (Logp, Charge) and a response value (Muta).

InstanceId MolID Logp Muta Atomid Charge
1 m1 2 7.5 a1 5.1
2 m1 2 7.5 a2 30
3 m1 2 7.5 a3 5
4 m2 5 12.5 a4 11
5 m2 5 12.5 a5 11.5
6 m3 3 9.8 a6 7.1
7 m3 3 9.8 a7 7

We use the stepwise procedure to estimate the regression coefficients of an hy-
perplane to predict Muta that includes LogP and Charge. For simplicity, we
consider R=1 and no F-test is performed when adding a new variable to the
hyperplane.

An initial hyperplane is approximated by choosing to regress Muta on either
LogP or Charge. At this aim, we compute the regression model for LogP by
randomly selecting primary values of LogP from each bag and iterating in order
to minimize the least square error (see Algorithm 1). Since LogP assumes a
single value on each bag, a single iteration is performed and it computes:

Muta = 4.52 + 1.62LogP with I = [2, 5, 3] and globalL = 0.25 (1)

Similarly, we compute coefficients of a regression model for the multi-instance
value of Charge. Let us consider the case that a random choice returns [5.1,11,7]
as primary values for Charge. We use these primary values to determine:

Muta = 3.61 + 0.82Charge (2)

Equation 2 minimizes the least square error on the charge values IC=[5,11.5, 7.1]
(with currentL=0.196). By using this new set of primary values, we compute:

Muta = 3.65 + 0.81Charge (3)
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that minimizes the least square error with the charge values IC=[5,11.5, 7.1]
(with currentL=0.195). This new set of primary values for Charge will lead to
stop EM iteration and return:

Muta = 3.65 + 0.81Charge with I = [5, 11.5, 7.1] and globalL = 0.19. (4)

The initial hyperplane is then approximated by regressing Muta on Charge
according to Equation 4. The residual attribute Muta′ is computed as follows:

Muta′ = Muta − (3.65 + 0.81Charge) Muta′ = [−0.23, −0.12, 0.35] (5)

Finally, we introduce the effect of LogP . Let us consider the case the random
choice return [2,5,3] as primary values for LogP . We firstly compute the residuals
LogP ′ by using the primary values of Charge in Equation 4, that is:

LogP ′ = LogP − (−0.52 + 0.5Charge) (6)

and then we compute:
Muta′ = −10.99LogP ′ (7)

which is proved to be the best one according to Algorithm 1. In this way we
complete the construction of the following hyperplane:

Muta = (3.65 + 0.81Charge) − 10.99(LogP − (−0.52 + 0.5Charge)) (8)

by constructing as primary instances of m1, m2 and m3, the attribute-value
vectors 〈m1, 2, 5〉, 〈m2, 5, 11.5〉 and 〈m3, 3, 7.1〉, respectively.

4.3 Predicting Unknown Reference Objects

Let τ be the relational model tree induced from relational data stored in D.
Let H be the schema of D and ro be a test reference object that is stored in a
new instance (T ) of the same database schema H . T contains the task-relevant
objects which interact with ro according to the foreign key constraints defined
in H . The response value of ro is unknown in T .

Starting from the root node of τ , ro is recursively passed down to the left
(or right) child according to the fact that the splitting test on left (or right)
edge is satisfied. When a leaf node is reached, MIRT constructs instances which
describe ro in T according to the task-relevant objects which are related to
ro in the partition at hand. The structure (attribute vector) of these instances
includes only the explanatory variables (X1, X2, . . . , Xd) which are involved in
the hyperplane tagging the leaf. The primary instance of ro is then constructed
by fixing, for each variable, one binding over the bag and then by minimizing
the distance from the training primary instances stored at the leaf.
Formally speaking, given:

1. the leaf t such that ro reaches t;
2. the hyperplane y = g(X) which tags t such that the attribute vector X is

spanned by d continuous variables X1, . . . , Xd;
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3. the set P of the training primary instances defined on X and stored in t;
4. the bag Bro of the database instances defined on X and constructed over T

to represent the reference object ro falling in t;
5. the set ψi (χi), that is, the range of Xi over P (R).

MIRT constructs the primary instance o of ro by assigning each Xi with one
value over χi in order to minimize the distance from training primary instances
stored in P , that is:

o = min
o∈χ1×χ2...×χd

min
t∈T

distance(p, t). (9)

The distance between p and t is computed on the basis of the Euclidean distance
measure, that is:

distance(p, t) =
√ ∑

i=1,...,d

(p[Xi]) − (t[Xi])2. (10)

Adopting the classical Euclidean distance, as in Equation 10, brings the prob-
lem of combining variables whose range may differ in several orders of magnitude.
To overcome this problem, each value of Xi is scaled within the range [0, 1]: the
lowest (highest) value is assigned the real value 0 (1). The scaled values of p[Xi]
and t[Xi] are obtained as follows:

p[Xi]scaled =
p[Xi] − minj

maxi − mini
and t[Xi]scaled =

t[Xi] − minj

maxi − mini
, (11)

where mini = min
xi∈χi∪ψi

xi and maxi = max
xi∈χi∪ψi

xi. Once the primary instance o

is constructed, it is used to predict the unknown response value by assigning the
explanatory variables in the hyperplane at t to the corresponding values in o.

5 Experiments

MIRT is implemented in a Multi-Relational Data Mining system tightly coupled
with a relational database (Oracle 10g) and it is empirically evaluated on bio-
logical and geographical relational databases. Biological databases represent a
benchmark application domain in multi-instance learning.

Experimental Setting. Each dataset is analyzed by means of a 10-fold cross-
validation. Ten databases are created so that MIRT can be trained on nine
databases and tested on the hold-out database. The system performance is eval-
uated on the basis of the average mean square error (MSE), that is:

MSE =
1
k

10∑

i=1

√√√√√ 1
#SDi

#SDi∑

j=1

(yj − ŷj(D/Di))2 (12)
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where D = {D1, . . . , Dk} is a cross-validation partition, Di is a set of indices
of testing databases, k is the number of folds (i.e., 10), #SDi is the number of
reference objects stored in Di and ŷj(D/Di) is the value predicted for the j-th
testing reference object by the model tree induced on D/Di.

The thresholds for the stopping criteria are fixed as follows: the minimum
number of reference objects falling in an internal node must be greater than the
square root of the number of reference objects in the entire database, and the
coefficient of determination in an internal node must be below 0.8. R is set to
5, while the maximum number of foreign key constraints to be added with a
foreign key test is set to 2.

MIRT is compared with Mr-SMOTI [1] which induces a relational model tree
that interleaves splitting tests and regression steps. At regression steps, Mr-
SMOTI estimates the regression coefficients of straight-line regressions by as-
suming multiple-bindings of a non-determinate variable as single instances of
least square regression. On one database, i.e. Mutagenesis, we compare MIRT
with RE-MAUVE and TILDE-RT. RE-MAUVE is a relational model tree learner
which resorts to aggregates to deal with non-determinate variables. TILDE-RT
is a relational regression tree learner which associates a constant to each leaf. Fi-
nally, we compare MIRT with the propositional model tree learners SMOTI and
M5’. In this last case, multi-relational data are transformed into a single table
format. Two different transformations are considered. The former (P1) creates a
single table by computing join operations for all possible foreign key paths rooted
in the target table. This transformation may create multiple tuples for the same
reference object. The latter transformation (P2) differs from the previous one
because it does not generate multiple tuples for the same reference object. It
is obtained by computing aggregates (i.e. the average for continuous values and
the mode for discrete values) of-non-determinate variables. In the case of P1 we
compute the MSE with respect to the average of the multiple response values
output for the same test reference object as final prediction (MSE-G). We also
compute the MSE by considering the response value as prediction of each single
instance (MSE-S). Differently, in the case of P2, a single response is directly
output for each test reference object. For the pairwise comparison of systems,
the non-parametric Wilcoxon two-sample paired signed rank test [17] is used.

Data Description. MIRT is tested on four real databases, that is, Mutagene-
sis, Biodegradability, North West England (NWE) and Munich. Mutagenesis
[21] and Biodegradability [10] are molecular databases used as a benchmark
for several ILP systems. Mutagenesis is evaluated in three different settings. B0
consists of those data obtained with the molecular modeling package QUANTA.
For each compound it obtains the atoms, bonds, bond types, atom types, and
partial charges on atoms. B1 consists of definitions in B0 plus indicators ind1,
and inda in molecule table. B2 consists in B1 plus variables (attributes) logp, and
lumo. Biodegradability is evaluated in four settings. B0 consists of those data
derived with SMILES without any global feature on molecule. B1 adds the nu-
merical attributes mWeight and logP. B2 extends B0 by adding the indicator on
molecular activity, while B3 includes all global features describing the molecules.
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Details are provided in [1]. NWE is a collection of geo-referenced census data pro-
vided by the United Kingdom (UK) 1998 census. NWE census data includes val-
ues of mortality rate (response variable) and deprivation indexes geo-referenced
at the level of 212 wards. Data also include 1045 rails, 2763 roads, 374 urban areas
and 1040 waters crossing wards for a total of 5434 tuples. NWE dataset is pro-
vided in the European project SPIN!(http://www.ais.fraunhofer.de/KD/SPIN/
project.html). Munich (http://www.di.uniba. it/%7Ececi/micFiles/munich db.
tar.gz) describes rent-price (response variable) of 2179 flats geo-referenced within
the Munich subquarters. The Munich metropolitan area is divided into 3 areal
zones, each decomposed into 64 districts, for a total of 446 quarters for a total of
6808 tuples. This data was collected in 1998 to develop the Munich rental guide
in 1999.

Results. The average MSE of the multi-relational systems is reported in Table
1. For Mutagensis (B1 and B2), we report MSE of RE-MAUVE and TILDE-
RT taken from [22]12. The comparison between MIRT and Mr-SMOTI (as well
as Re-MAUVE and TILDE-RT for Mutagenesis) confirms our intuition that
the accuracy of a relational model tree is generally improved when regression
coefficients of non-determinate variables are estimated according to principles of
multi-instance learning. The only database where Mr-SMOTI outperforms MIRT
is Mutagenesis B2, in which mutagenecity of molecule strongly depends on the
numeric properties of molecules (i.e., lumo and logP) which have single values
for each molecule. This result is a confirmation that the stepwise construction
of a model tree by interleaving split nodes and regression nodes outperforms the
classical construction of a model tree by firstly partitioning data set and then
locally deriving the hyperplanes to predict reference objects at each node [1].
Anyway, the advantages of a tree structure with split and regression nodes may
be decreased by the presence of outliers values over non-determinate variables.
This consideration suggests a future direction of the research described in this
work, that is, employing the principles of multi-instance learning in the stepwise
induction of relational model trees with split and regression nodes. The results
on Mutagenesis show that MIRT also outperforms RE-MAUVE and TILDE-RT.

The results of the comparison between MIRT, SMOTI and M5’ are reported
in Table 2. The comparison is generally in favor of MIRT. The only statistically
significant tests (p≤0.05) where a propositional learner (SMOTI -P2) outper-
forms MIRT concern Biodegradability (B2-B3). In general, the comparison of
accuracy confirms not only the advantages of the structural approach over the

1 The MSE of Mr-SMOTI on Mutagenesis significantly differs from the values reported
in [22]. Differences may depend from a different tuning of parameters. In this work,
we run Mr-SMOTI by allowing the possibility of learning foreign key tests introduc-
ing two foreign keys simultaneously (the default is 1), learning a foreign key test
and an attribute test simultaneously in the same test (by default this possibility is
disabled), filtering splitting tests which select less than 5 molecules on the left and
right side of the tree.

2 The MSE values reported in [22] are without the square radix.



Top-Down Induction of Relational Model Trees in Multi-instance Learning 39

Table 1. MIRT vs Mr-SMOTI, Re-Mauve and TILDE-RT: MSE of the model trees
induced on the 10-fold CV of databases. Best MSE are in italics. “-” (“+“) means
that Mr-SMOTI performs worse (better) than MIRT in a Wilcoxon Test. “–” (“++“)
denotes the statistically significant values (p≤0.05).

DB MIRT Mr-
SMOTI

Re-
MAUVE
no agg

Re-
MAUVE
agg

TILDE-
RT

TILDE-
RT agg

Mutgenesis B0 1.4 1.67 –
B1 1.11 1.28 - 1.40 1.4
B2 1.12 0.95+ 1.20 1.20 1.24 1.36

Biodegradability B0 1.32 1.37 -
B1 1.206 1.25 -
B2 0.136 0.49 –
B3 0.142 0.41 –

NWE 0.0024 0.0026 =
Munich 4.66 4.78 –

Table 2. MIRT vs SMOTI and M5’ (P1 and P2): MSE of the model trees induced
on the 10-fold CV of databases. For SMOTI (P1) not all values are available, since
the system returns error of memory. Best MSE are in italics. “-” (“+“) means that
SMOTI/M5’ performs worse (better) than MIRT in a Wilcoxon Test. “–” (“++“)
denotes the statistically significant values (p≤0.05).

DB
MIRT SMOTI (P1) M5(P1) SMOTI

(P2)
M5(P2)

MSE MSE-G MSE-S MSE-G MSE-S MSE MSE
Mutgenesis B0 1.4 2.44 – 3.92 – 1.68 - 2.48 – 2.57 - 1.55 -

B1 1.11 1.62 – 1.65 – 1.16 - 2.10 – 1.38 - 1.13 =
B2 1.12 2.19 - 2.15 – 1.05 - 1.05 - 1.009 + 1.007 +

BiodegradabilityB0 1.32 1.44 – 1.35 - 1.63 – 1.41 -
B1 1.20 1.68 – 1.71 – 2.13 – 1.28 -
B2 0.13 0.12 + 0.12 + 0.06 ++ 0.18–
B3 0.14 0.14 = 0.15 - 0.05 ++ 0.18 –

NWE 0.0024 0.0028 – 0.0026 = 0.0028 - 0.0026 - 0.003 – 0.0023 +
Munich 4.66 5.90 – 6.03 – 5.25 – 5.27 – 5.49 – 4.62 +

propositional one when mining model trees from multi-relational data, but also
the validity of multi-instance approaches in relational regression.

6 Conclusions

MIRT is a novel multi-relational data mining system which induces a relational
model tree to predict the response value of a reference object (target object)
by taking into account non-determinate task-relevant objects. This work points
out the hypothesis that it is almost never the case that all multiple-bindings of
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a non-determinate variable contributed to the observed response value. Under
this hypothesis, a piece-wise hyperplane is constructed by locally sequencing
straight-line regressions in a stepwise fashion and estimating coefficients of such
regressions on the basis of only the best bindings of the regression variables.
Bindings are chosen within an EM implementation that minimizes least square
error on primary values. Explanatory variables involved into an hyperplane are
a subset of the explanatory variables from the data relations which appear in the
splitting test along the tree path from the root to a leaf. Problems of collinearity
are naturally solved by stopping the hyperplane construction when the addition
of a term is not statistically significant. The comparison between MIRT and
the relational model tree system Mr-SMOTI as well as the propositional model
tree systems, SMOTI and M5’, confirm that identifying the primary instances
outperforms existing propositional and structural systems.As a future study, we
plan to apply principles of multi-instance learning to construct a relational model
tree with split and regression nodes.
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