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Abstract 

In this paper we propose a method for the discovery of spatial association rules, that is, association 
rules involving spatial relations among (spatial) objects. The method is based on a multi-relational 
data mining approach and takes advantage of the representation and reasoning techniques developed 
in the field of inductive logic programming (ILP). In particular, the expressive power of predicate 
logic is profitably used to represent spatial relations and background knowledge (such as spatial 
hierarchies and rules for spatial qualitative reasoning) in a very elegant, natural way. The 
integration of computational logics with efficient spatial database indexing and querying procedures 
permits applications that cannot be tackled by traditional statistical techniques in spatial data 
analysis. The proposed method has been implemented in the ILP system SPADA (spatial pattern 
discovery algorithm). We report the preliminary results of the application of SPADA to Stockport 
census data. 

1. Background and motivation 

Censuses make a huge variety of general statistical information on society available to both 
researchers and the general public. Population and economic census information is of great 
value in planning public services (education, funds allocation, public transportation), as well 
as in private businesses (locating new factories, shopping malls or banks, as well as 
marketing particular products). 

The application of data mining techniques to census data, and more generally, to official 
data, has great potential in supporting good public policy and in underpinning the effective 
functioning of a democratic society [29]. Nevertheless, it is not straightforward and requires 
challenging methodological research, which is still in the initial stages. 

As an illustrative example of some research issues, let us consider the census data table 
reported in Figure 1, where each row represents an enumeration district (ED), the smallest 
areal unit for which census data are published in UK (1). 

                                                                 
(1)  National statistics institutes (NSIs) make a great effort to collect census data, but they are not the only 

organisations that analyse them: data analysis is often done by  different inst itutes. By law, NSIs are prohibited 
from releasing individual responses to any other government agency or to any individual or business 
enterprise, so data are summarised for reasons of privacy before being distributed to external agencies and 
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The data analyst might be interested in finding some kind of dependence between the active 
population and the percentage of cars per household. A dependence can be expressed as 
an association rule, that is an implication of the form 

P→Q (s %, c %), 

where P and Q are a set of literals, called items, such that P∩Q = ∅, while the 
percentages s % and c % are respectively called the support and the confidence of the rule, 
meaning that in s % of table  rows both P and Q are true, and in c % of rows if P is true Q 
also holds. More formally, s estimates the probability p(P∪Q), while c estimates the 
probability p(Q|P). The following is an example of an association rule establishing a 
dependence between the active population and the percentage of cars per household: 

{low %FTEM, low %PTEM} → {low %PTEF, low %CH}    (41 %, 62 %), 

where low %FTEM, low %PTEM, low %PTEF, and low %CH are some items obtained 
by normalising and then discretising the attributes in Figure 1, namely: 

low %FTEM: low (0.. 34 %) percentage of full-time employed males 

                                                                                                                                                                                    
institutes. Therefore, data analysts are confronted with the problem of processing data which summarise 
characteristics of groups of individuals. 

c1 c24 c25 c26 c27 c28 c30 c32 c33 c34 c35 c36 
03BSFA01 44 69 23 6 5 7 0 0 7 15 109 
03BSFA02 56 108 36 8 11 22 0 2 12 27 233 
03BSFA03 74 98 27 5 9 18 1 0 13 33 127 

… … … … … … … … … … … … 
 

c1:  ED level code, e.g. ‘03BSFA01’, where ‘03’ denotes a country/region (Greater 
Manchester), ‘BS’ denotes a district (Stockport), ‘FA’ denotes a ward 
(Bredbury) and ‘01’ is the enumeration district.  

c24: Total females of employees (full time) aged 16 and over 
c25: Total males of employees (full time) aged 16 and over 
c26: Total females of employees (part time) aged 16 and over 
c27: Total males of employees (part time) aged 16 and over 
c28: Total females of self-employed — with employees aged 16 and over 
c30: Total males of self-employed — with employees aged 16 and over 
c32: Total females of on a government scheme aged 16 and over 
c33: Total males of on a government scheme aged 16 and over 
c34: Total females of unemployed aged 16 and over 
c35: Total males of unemployed aged 16 and over 
c36: Total car availability in all households (households with three or more cars 

counted as having three cars) 
 

Figure 1: An example of census data table. Data are summarised per  
enumeration district (ED) 
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low %PTEM: low (0.. 20 %) percentage of part-time employed males 

low %PTEF: low (0.. 16 %) percentage of part-time employed females 

low %CH: low (0.. 0.8 %) percentage of cars per household 

For the sake of completeness, we report an alternative logical notation for the above 
association rule: 

low %FTEM ∧ low %PTEM → low %PTEF ∧ low %CH (41 %, 62 %), 

where the conjunction low %FTEM ∧ low %PTEM ∧ low %PTEF ∧ low %CH is called 
pattern. This association rule states that in 62 % of EDs where there is both a low 
percentage of full-time employed males and a low percentage of part-time employed males, 
the percentage of part-time employed females is low and the percentage of cars per 
household is also low. The support is 41 %, meaning that in 41 % of analysed EDs all 
conditions expressed by the pattern low %FTEM ∧ low %PTEM ∧ low %PTEF ∧ 
low %CH holds. By interpreting this association rule we can say that 41 % of EDs seem to 
be deprived areas. 

1.1. The single table assumption 

The discovery of association rules has attracted a great deal of attention in data mining 
research [11]. The blueprint for all the algorithms proposed in the literature is the levelwise 
method by Mannila and Toivonen [24], which is based on a breadth-first search in the 
lattice spanned by a generality order between patterns. Despite some interesting extensions, 
almost all algorithms reported in the literature share a restrictive data representation 
formalism, known as single-table assumption. More specifically, it is assumed that the data 
to be mined are represented in a single table (or relation) of a rela tional database, such that 
each row (or tuple) represents an independent unit of the sample population and the 
columns correspond to properties of units.  

In some applications this assumption turns out to be a great limitation. For instance, in the 
above example, units correspond to EDs, which are spatial objects, since they have a 
geographical location. Having recognised this peculiarity, the data analyst may be interested 
in investigating the socioeconomic phenomenon of deprivation in association with the 
geographical distribution of EDs. To achieve this goal, the analyst may decide to augment 
the data table in Figure 1 with information on neighbouring units. In particular, for each ED 
in Figure 1, the analyst proposes the following data specifications: 

• the number of schools in the neighbouring EDs, 

• the number of banks in the neighbouring EDs, and 

• the number of commercial activities in the neighbouring EDs, 
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since he/she suspects that the low percentage of cars can also be related to the number of 
services available in the neighbourhood. 

If the analyst decides to represent the above data only for one neighbouring ED, the data 
table in Figure 1 can be extended by simply adding three attributes (see Table  1). What if 
he/she wants to represent the three attributes for all spatially adjacent EDs, which are 
variable in number? Under the single-table assumption he/she can create one entry for each 
adjacent ED in the original data table (see Table  2). However, this solution presents two 
main disadvantages: 

 (i) we have the usual problems connected with non-normalised tables, such as redundancy 
and anomalies in the insertion and removal of data. 

(ii) we have one line per neighbouring ED, which means that the analysis results will really 
concern neighbouring EDs. In other words, the observation unit has deceptively 
changed. 

Table 1: Three additional attributes of the nearest neighbour added to the single table 

c1 c24 c25 … c36 Number of 
schools 

Number 
of banks 

Number of 
commercial 

activities 
03BSFA01 44 69 ... 109 1 1 13 
03BSFA02 56 108 … 233 0 0 23 
03BSFA03 74 98 … 127 0 1 6 

… … … … … … … … 

Table 2: Each row in the original table is duplicated to add information on a neighbouring ED 

c1 c24 c25 … c36 Number of 
schools 

Number 
of banks 

Number of 
commercial 

activities 
03BSFA01 44 69 ... 109 0 1 2 
03BSFA01 44 69 ... 109 1 0 3 
03BSFA03 74 98 … 127 0 1 1 

… … … … … … … … 

The former is a typical database issue, while the latter is more related to the data analysis 
procedure. 

To solve these problems and keep the single -table assumption, the data analyst may try to 
summarise the information on the neighbouring EDs, say, by averaging the number of 
schools, banks and commercial activities (see Table  3). It is noteworthy that in this case 
there is no redundancy and standard data mining methods work well. However, there is an 
information loss that might lead to the misunderstanding of the underlying phenomenon. For 
instance, an ED can be adjacent to another ED with many services, as well as to other EDs 



Research in Official Statistics  Number 1/2002 

 23

with no services at all, since they fall into the green belt of the city. By averaging the 
number of services per neighbouring ED, the analyst may give a totally wrong indication on 
the accessibility of services.  

Table 3: Three additional attributes of the nearest neighbour added to the single table 

c1 c24 c25 … c36 Average 
number of 

schools 

Average 
number 
of banks 

Average number 
of commercial 

activities 
03BSFA01 44 69 ... 109 0.25 0.25 3.3 
03BSFA02 56 108 … 233 0.33 0 0.36 
03BSFA03 74 98 … 127 0 0.2 0.12 

… … … … … … … … 

From a database perspective, the best representation of data would be that in Figure 2. 

 

In this database two relations are defined, one for the reference EDs, that is, the EDs 
whose socioeconomical factors are the subject of investigation, and one for the 
neighbouring EDs, which are considered task relevant, because they are spatially adjacent 
to some reference EDs. Obviously, mining this simple database requires far more powerful 
methods which go beyond the single-table assumption. 

c1 c24 c25 ... c36 
03BSFA01 44 69 … 109 
03BSFA02 56 108 … 233 
03BSFA03 74 98 … 127 
… … … … … 

 
Reference 

ED 
Neighbouring 

ED 
Number of 

schools 
Number 
of banks 

Number of commercial 
activities 

03BSFA01 03BSFA16 0 1 2 
03BSFA01 03BSFA11 1 0 3 
03BSFA01 03BSFT22 0 0 1 
03BSFA01 03BSFA07 0 0 4 
03BSFA01 03BSFA12 0 0 2 
03BSFA01 03BSFA10 0 0 1 
03BSFA02 03BSFW11 0 1 1 

… … … … … 

Figure 2: A multi-relation representation of socioeconomical attributes of some reference EDs 
and of their neighbouring ED. The attribute ‘Reference ED’ in the lower table 

 is a foreign key of the upper table. 

REFERENCE ED 

NEIGHBOURING ED 



D. Malerba, F. Esposito, F. A. Lisi and A. Appice   Mining spatial association rules in census data 

 

 24

1.2. A multi-relational data mining approach 

The recently promoted (multi-)relational (2) approach to data mining [9] looks for patterns 
that involve multiple relations of a relational database. Thus the data taken as input by these 
approaches typically consists of several tables and not just a single one, as is the case in 
most existing data mining approaches. Patterns found by these approaches are called 
relational and are typically stated in a more expressive language than patterns defined in a 
single data table. 

The following is an example of a relational association rule : 

male-full-time-employee%(X,low) ∧ male-part-time-employee%(X,low) ∧ 
neighbour(X,Y) ∧ comm-activities(Y,high) → male-self-employee%(X,high) 

(32 %, 70 %), 
which states that in 70 % of the cases the low percentage of full-time and part-time male 
employees in some reference ED X, adjacent to another task relevant ED Y, with many 
commercial activities, implies a high percentage of self-employed males in X. The relational 
pattern 

male-full-time-employee%(X,low) ∧ male-part-time-employee%(X,low) ∧ 
neighbour(X,Y) ∧ comm-activities(Y,high) ∧ male-self-employed%(X,high) 

occurs in 32 % of reference EDs. 

It is noteworthy that in this example, and more generally in relational association rules, the 
items are first-order logic atoms , that is, n-ary predicates applied to n terms . In this 
example terms can be either variables, such as X and Y, or constants, such as low or 
high. In other words, subsets of first-order logic, which is also called predicate calculus 
or relational logic, are used to express relational patterns and relational association rules. 

This strong link with logics is not surprising, since any relational database can be easily 
modelled by a deductive relational database (DDB), by simply transforming all tuples in 
materialised tables into ground facts (extensional part of a DDB) and all views into rules 
(intensional part of a DDB) (see Figure 3). 

                                                                 
(2)  The term multi-relational data mining is sometimes preferred to relational data mining and has also been 

used to denote data mining applied to relational databases [15].  
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Therefore, a relational pattern is simply a DDB query, whose result set cardinality 
corresponds to the support. 

Considering this strong link with logics, it is not surprising that many algorithms for multi-
relational data mining originate from the field of inductive logic programming (ILP) [25], 
[8], [19], [26]. ILP has always been concerned with finding patterns expressed as logic 
programs. Initially, its main focus was on automated program synthesis from examples [2], 
but, in recent years, the scope of ILP has broadened to cover the whole spectrum of data 
mining tasks (association rules, regression, clustering and so on). 

Extending a single-table data mining algorithm to a relational one is not trivial. Considerable 
insight and creativity is required to extend some key notions, such as distance measure and 
probabilistic dependence, to multi-relational data. Efficiency is also very important, as even 
testing a given relational pattern for validity is often computationally expensive. Moreover, 
for relational pattern languages, the number of possible patterns can be very large and it 
becomes necessary to limit their space of possible patterns by providing explicit constraints 
(declarative bias ). These normally specify what relations should be involved in the 
patterns, how the relations may be interconnected and what other syntactic constraints the 
patterns have to obey. 

1.3. Additional issues in spatial data mining 

As explained above, there are two reasons for approaching the problem of mining spatial 
association rules as a multi-relational data mining problem. First, attributes of the neighbours 
of some spatial object of interest may influence the object itself, hence the need for 
representing object interactions. Second, different geographical objects may have different 

reference-ED(‘03BSFA01’, 44, 69, …, 109). 
reference-ED(‘03BSFA02’, 56, 108, …, 233). 
reference-ED(‘03BSFA01’, 74, 98, …, 127). 
… 
neighbouring-ED(‘03BSFA01’,’03BSFA16’, 0, 1,2). 
neighbouring-ED(‘03BSFA01’,’03BSFA11’, 1, 0,3). 
… 
male-full-time-employed%(A,low) ← reference-ED(A, B, _, …, _),  
        B > = 0, B <= 30. 
… 

EXTENSIONAL 
PART  

INTENSIONA
L PART  

Figure 3: A deductive database view of the relational database in Figure 2. The extensional part 
is a set of ground facts corresponding to the tuples of the materialised tables, while the 

intensional part is a set of logical rules defining the views created in the relational database. In 
this example, we assume that the attribute male-full-time-employed%   

has been defined by creating a view in the relational database. 
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properties, which can be properly modelled by as many data tables as the number of object 
types, hence the inadequacy of the single-table representation. 

Some proposals for mining relational association rules have already been reported in 
literature [6]. However, mining spatial association rules is a more complex task. Two 
further degrees of complexity are: 

(i) the implicit definition of spatial relations and 

(ii) the granularity of the spatial objects. 

The former is due to the fact that the location and the extension of spatial objects implicitly 
defines spatial relations such as topological, distance and direction relations. Therefore, 
complex data transformation processes are required to make spatial relations explicit (see 
the application of machine learning techniques to topographic map interpretation [22]). 

The latter refers to the fact that spatial objects can be described at multiple levels of 
granularity. For instance, UK census data can be geo-referenced with respect to the 
following hierarchy: 

ED → Ward → District → County, 

based on the inside  relationship between locations (3). Interesting rules are more likely to 
be discovered at low granularity levels (ED and ward) than at the county level. On the 
other hand, large support is more likely to exist at higher granularity levels (district and 
county) rather than at low levels. 

In the next section, a new algorithm for mining spatial association rules is reported. The 
algorithm, named SPADA (spatial pattern discovery algorithm), is based on an ILP 
approach to relational data mining and permits the extraction of multi-level association rules, 
that is, association rules involving spatial objects at different granularity levels. SPADA has 
been implemented in Sictus Prolog and is interfaced to an Oracle8i® database, empowered 
by an Oracle Spatial cartridge, which enables spatial data to be stored, accessed and 
analysed quickly and efficiently. The system also performs the appropriate data 
transformation by extracting spatial features (Featex module) and by discretising numerical 
attributes (RUDE module). The application of SPADA to two data mining tasks involving 
UK census data is reported in Section 3. 

                                                                 
(3)  In particular, the Stockport district of Greater Manchester is divided into 22 wards (Bredbury, 

Brinnington, Cale Green, Cheadle, Cheadle Hulme North, Cheadle Hulme South, Davenport, East Bramhall, 
Edgeley, Great Moor, Hazel Grove, Heald Green, Heaton Mersey, Heaton Moor, Manor, North Marple, North 
Reddish, Romiley, Shipping, South Marple, South Reddish, West Bramhall), each of which consists of 30 EDs 
on average.  
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2. Mining spatial association rules with SPADA 

The discovery of spatial association rules is a descriptive mining task aiming to detect 
associations between reference objects  and some task-relevant objects . The former 
are the main subject of the description, while the latter are spatial objects that are relevant 
for the task in hand and are spatially related to the former. For instance, we may be 
interested in describing a given area by finding associations between large towns (reference 
objects) and spatial objects belonging to the map layers of road network, hydrography and 
administrative boundaries (task-relevant objects). In particular, we look for spatial patterns, 
namely patterns that contain at least one spatial relationship. We call 

P → Q (s %, c %) 

a spatial association rule , if P∪Q is a spatial pattern. 

As usual in the problem setting of association rule mining, we search for spatial associations 
with large support and high confidence (strong rules), such as 

is_a(X,large_town) ∧ intersects(X,Y) ∧ is_a(Y,road) → 
intersects(X,Z) ∧ is_a(Z, road) ∧ Z≠Y        (91 %, 85 %), 

which states that ‘If a large town X intersects a road Y, then X intersects a road Z distinct 
from Y with 91 % support and 85 % confidence’. 

Since some kind of taxonomic knowledge of task-relevant geographic layers may also be 
taken into account to obtain descriptions at different granularity levels (multiple -level 
association rules), finer-grained answers to the above query are also expected, such as: 

is_a(X,large_town) ∧ intersects(X,Y) ∧ is_a(Y,regional_road) → 

intersects(X,Z) ∧ is_a(Z, main_trunk_road) ∧ Z ≠ Y     (45 %, 90 %), 

which provides more insight into the nature of the task relevant objects Y and Z, according 
to the spatial hierarchy reported in Figure 4. 
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Figure 4: Three spatial hierarchies and their association to three granularity levels  

road 

motorway main_trunk_road regional_road 

a14 ss96    ss16bis    ss16 r16   r93  r97 

town 

medium_size_town small_town large_town 

modugno palese  giovinazzo  bitetto bari  andria  trani 

boundary 

fg_boundary  ta_boundary   ba_boundary  

fg_boundary ta_boundary  ba_boundary  

 

It is noteworthy that the support and the confidence of the last rule changed. Generally, 
the lower the granularity level, the lower the support of association rules. Therefore, we 
follow Han and Fu’s [14] proposal to use different thresholds of support and confidence for 
different granularity levels. 
The problem of mining spatial association rules can be formally stated as follows: 

Given: 
• a spatial database (SDB), 
• a set of reference objects S, 
• some sets Rk, 1≤k≤m, of task-relevant objects 
• some spatial hierarchies Hk involving objects in Rk 
• M granularity levels in the descriptions (1 is the highest while M is the lowest) 
• a set of granularity assignments ψk which associate each object in Hk with a granularity 

level 
• a couple of thresholds minsup[l] and minconf[l] for each granularity level 

Find: strong multi-level spatial association rules. 

The problem has been already tackled by Koperski et al. [18]. They propose a top-down, 
progressive refinement method which exploits taxonomies both on spatial predicates (two-
step spatial computation) and spatia l objects (pattern discovery). The method has been 
implemented in the module Geo-associator of the spatial data mining system 
GeoMiner [16]. This method, however, suffers from severe limitations due to the single -
table assumption. Our aim is to show the usefulness of an ILP approach to mining spatial 
association rules and, more generally, to spatial data mining. Representation problems and 
algorithmic issues related to the application of our logic-based computational method are 
discussed in the next two subsections. 

2.1. The representation 

The basic idea in our proposal is that a spatial database boils down to a deductive relational 
database (DDB) once the spatial relationships between reference objects and task-relevant 
objects have been extracted. The expressive power of first-order logic in databases also 

1 

2 

3 
 

l 
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allows us to specify background knowledge (BK), such as spatial hierarchies, constraints 
on spatial patterns and association rules (declarative bias ), as well as domain specific 
knowledge  expressed as sets of rules. In particular, the declarative bias helps to constrain 
the search in the exponentially large space of patterns, so that only interesting patterns are 
actually generated and evaluated. On the contrary, the specification of a domain specific 
knowledge allows SPADA to search for patterns which could not be otherwise found in the 
spatial database. The rules defining the domain specific knowledge are stored in the 
intensional part of the DDB and can support, amongst other things, spatial qualitative 
reasoning. The current version of SPADA supports the specification of both the declarative 
bias and the domain specific knowledge, which should be considered additional input to the 
system. 

Henceforth, we denote the DDB in hand D(S) to mean that it is obtained by adding the data 
extracted from SDB regarding the set of reference objects S to the previously supplied BK. 
The ground facts in D(S) can be grouped into distinct subsets: each group, uniquely 
identified by the corresponding reference object s∈S, is called spatial observation and 
denoted O[s]. We define the set: 

R[s] = {ri| ∃k: ri ∈ Rk and a ground fact θ(s, ri) exists in D(S)} 
 

as the set of task-relevant objects related to s. The set O[s] is given by 

O[s]  = O[s|s] ∪U ][i

 ]|[
sRr

i srO
∈

 

where: 

§ O[s|s] contains properties of s and spatial relations between s and ri 

§ O[ri|s] contains properties of ri and spatial relations between ri and some s′∈S. 

In an extreme case, O[s] can coincide with D(S). This is the case in which s is spatially 
related to all task-relevant objects. The unique reference object associated to a spatial 
observation allows us to define the support and the confidence of a spatial association rule. 
More precisely, the spatial association rule P→Q (s %, c %) means that in s % of spatia l 
observations both conjunctions P and Q hold and in c % of spatial observations where P is 
true Q holds too. Note that the notion of spatial observation in SPADA adapts the notion of 
interpretation, which is common to many relational data mining systems [9], to the case of 
spatial databases.  

Example 1: Suppose the mining task is to the discover the associations relating large towns 
(S) with waterways (R1), roads (R2) and province boundaries (R3) in the Province of Bari, 
Italy. We are also given a BK including the spatial hierarchies of interest and three levels of 
granularity (see Figure 4). 

hierarchy(town, 1, null, [town]). 
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hierarchy(town, 2, town, [large_town, medium_size_town, small_town]). 
hierarchy(town, 3, large_town, [bari, altamura, andria, barletta, trani, bitonto, molfetta, 

gravina, monopoli, corato, gioia_del_colle]). 
hierarchy(town, 3, medium_size_town, [modugno, palo_del_colle, terlizzi, ruvo, noicattaro, 

adelfia, grumo, giovinazzo, mola_di_bari]). 
hierarchy(town, 3, small_town, [palese, bitetto, binetto, toritto, valenzano, cassano, mariotto, 

palombaio]). 
hierarchy(road, 1, null, [road]). 
hierarchy(road, 2, road, [motorway, main_trunk_road, regional_road]). 
hierarchy(road, 3, motorway, [a14]). 
hierarchy(road, 3, main_trunk_road, [ss16, ss16bis, ss96, ss98, ss99, ss100]). 
hierarchy(road, 3, regional_road, [r16, r93, r97, r170, r171, r172, r271, r378]). 
hierarchy(water, 1, null, [water]). 
hierarchy(water, 2, water, [sea, river]). 
hierarchy(water, 3, sea, [adriatico]). 
hierarchy(water, 3, river, [ofanto, lacone]). 
hierarchy(boundary, 1, null, [boundary]). 
hierarchy(boundary, 2, boundary, [fg_boundary, ta_boundary, br_boundary, mt_boundary, 

pz_boundary]). 
is_a(X, Y):- hierarchy(_, _, Y, Nodes), member(X, Nodes). 
is_a(X, Y):- hierarchy(Root, _, Father, Nodes), member(X, Nodes), is_a(Father, Y). 

Here, the is a stands for an instance_of relation between spatial objects and their 
geographical layers. Spatial relations between objects in S and objects in any of R1, R2 and 
R3, are extracted by means of spatial computation and transformed into facts of the kind 
<spatial relation>(RefObj, TaskRelevantObj) to be added to D(S). 

Spatial observations are portions of D(S), each concerning a reference object. In our case, 
there are 11 distinct spatial observations, one for each large town. For instance, O[barletta] 
is given by the union of the sets of ground facts listed in Table  4. By definition, the 
observation encompasses not only spatial relationships between the reference object 
barletta∈S and task-relevant objects in R1 (adriatico etc.), R2 (a14 etc.), R3 (fg_boundary 
etc.), but also spatial relationships between each of these task-relevant objects and some 
other s′∈S (e.g. giovinazzo) like in adjacent_to(giovinazzo, adriatico). 

Let A = {a1, a2, …, at} be a set of atoms whose terms are either variables or constants 
(Datalog atoms [4]). Predicate symbols used for A are all those permitted by the user-
specified declarative bias, while the constants are only those defined in D(S). The atom 
denoting the reference objects is called key atom. For instance, with reference to the 
above example of the Province of Bari, A contains the key atom is_a(X,large_town), 
‘spatial’ atoms such as close_to(X,Y), intersects(X,Y), and adjacent_to(X,Y), and 
‘taxonomic’ atoms such as is_a(X,road), is_a(X,main_trunk_road), …, is_a(X,water), 
is_a(X,sea). 
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Conjunctions of atoms on A are called atomsets  [5] like the item sets in classical 
association rules. In our framework, a language of patterns L[l] at the granularity level l is a 
set of well-formed atomsets generated on A. Necessary conditions for an atom set P to be 
in L[l] are the presence of the key atom, the presence of ‘taxonomic’ atoms exclusively at 
the granularity level l, the linkedness [17] and the safety. In particular, the last property 
guarantees the correct evaluation of patterns when the handling of negation is required (see 
Example 2). To a pattern P we assign an existentially quantified conjunctive formula eqc(P) 
obtained by turning P into a Datalog query. 

Table 4: The spatial observation O[barletta] 

O[barletta | barletta] O[a14 | barletta] O[r170 | barletta] 
is_a(barletta, large_town). is_a(a14, road). is_a(r170, road). 
adjacent_to(barletta, adriatico). intersects(bari, a14). intersects(andria, r170). 
Intersects(barletta, a14). intersects(trani, a14). … 
Intersects(barletta, ss16). intersects(bitonto, a14). O[r193 | barletta] 
Intersects(barletta, ss16bis). intersects(gioia_del_colle, a14). is_a(r193, road). 
Intersects(barletta, r170). intersects(molfetta, a14). … 
Intersects(barletta, r193). … O[fg_boundary | barletta] 
close_to(barletta, fg_boundary). O[ss16 | barletta] is_a(fg_boundary, boundary). 
… is_a(ss16, road). adjacent_to(trani, fg_boundary). 
O[adriatico | barletta] intersects(bari, ss16). … 
is_a(adriatico, water). intersects(trani, ss16). O[ss16bis | barletta] 
adjacent_to(bari, adriatico). intersects(monopoli, ss16). is_a(ss16bis, road). 
adjacent_to(trani, adriatico). intersects(molfetta, ss16). intersects(bari, ss16bis). 
adjacent_to(molfetta, adriatico). … intersects(trani, ss16bis). 
adjacent_to(giovinazzo, adriatico).  intersects(molfetta, ss16bis). 
…  … 

 

Definition: A pattern P covers an observation O[s] if eqc(P) is true in O[s]∪BK. 

Example 2: The pattern 

P ≡ is_a(X, large_town), intersects(X,R), intersects(Y,R), Y \= X, is_a(R, road) 

covers the spatial observation O[barletta] shown in Table  1 because the corresponding 

eqc(P) ≡ ∃ is_a(X, large_town) ∧ intersects(X,R) ∧ intersects(Y,R)  
∧ Y \ = X ∧ is_a(R, road) 

is satisfied by O[barletta]∪BK. Here the predicate \= is the ISO prolog standard built-in 
predicate for the non-unifiability of two variables. Note that it hides a negation. 
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Definition: Let O be the set of spatial observations in D(S) and OP denote the subset of O 
containing the spatial observations covered by the pattern P. The support of P is defined as 
σ(P) = | OP | / |O|. 

Definition: A spatial association rule in D(S) at the granularity level l is an implication of 
the form 

P→Q (s %, c %), 

where P∪Q∈L[l], P∩Q=∅, P includes the key atom and at least one spatial relationship is 
in P∪Q. The percentages s and c are respectively called the support and the confidence of 
the rule, meaning that s % of spatial observations in D(S) is covered by P∪Q and c % of 
spatial observations in D(S) that is covered by P is also covered by P∪Q. 

Definition: The support and the confidence of a spatial association rule P→Q are given by 

s = σ(P∪Q) and c  = ϕ(Q|P)  = σ(P∪R) / σ(P). 

In multi-level associa tion rule mining, an ancestor relation between two patterns at 
different granularity levels P ∈ L[l] and P’ ∈ L[l’], l < l’ exists if and only if P’ can be 
obtained from P by replacing each spatial object h ∈ Hk at granularity level l = ψk(h) with a 
spatia l object h’ < h in Hk, which is associated with the granularity level l’ = ψk(h’). 

The frequency of a pattern depends on the granularity level of task-relevant spatial objects. 

Definition: Let minsup[l] and minconf[l] be two thresholds setting the minimum support 
and the minimum confidence respectively at granularity level l. A pattern P is large (or 
frequent) at level l if σ(P) ≥ minsup[l] and all ancestors of P with respect to the 
hierarchies Hk are large at their corresponding levels. The confidence of a spatial 
association rule P→Q is high at level l if ϕ(Q|P) ≥ minconf[l]. A spatial association rule 
P→Q is strong at level l if P∪Q is large and the confidence is high at level l. 

2.2 Method 

The task of mining spatial association rules itself can be split into two sub-subtasks: 

(i) find large (or frequent) spatial patterns; 

(ii) generate highly-confident spatial association rules. 

The reason for such a division is that frequent patterns are not commonly considered useful 
for presentation to the user as such. They can be efficiently post-processed into rules that 
exceed given threshold values. In the case of association rules the threshold values of 
support and confidence offer a natural way of pruning weak, rare rules. 
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Algorithm design for frequent pattern discovery has turned out to be a popular topic in data 
mining. Most algorithms proposed in the literature are based on a breadth-first search in the 
lattice spanned by a generality order ≥ between patterns. Given two patterns P1 and P2, we 
write P1 ≥ P2 to denote that P1 is more general than P2 or equivalently that P2 is more 
specific than P1. The space is searched one level at a time, starting from the most general 
patterns and iterating between the candidate generation and candidate evaluation phases. 
The high-level algorithm of SPADA implements the aforementioned levelwise method (see 
Figure 5). 

 

The pattern space is structured according to the θ-subsumption [28]. Many ILP systems 
adopt θ-subsumption as the generality order for clause spaces. In this context we need to 
adapt the framework to the case of atomsets. More precisely, the restriction of 
θ-subsumption to Datalog queries (i.e. existentially quantified conjunctions of Datalog 
atoms) is of particular interest. 

Definition: Let Q1 and Q2 be two queries. Then Q1 θ-subsumes Q2 if and only if there 
exists a substitution θ such that Q1 ⊇ Q2θ. 

Example 3: Let us consider the queries 

Q1 ≡ ∃ is_a(X, large_town) ∧ intersects(X, R) ∧ is_a(R, road) 
Q2 ≡ ∃ is_a(X, large_town) ∧ intersects(X,Y) 
Q3 ≡ ∃ is_a(X, large_town) 

We say that Q1 θ-subsumes Q2 and Q2 θ-subsumes Q3 with substitutions θ1={Y\ R} and 
θ2=∅ respectively. 

We can now introduce the generality order adopted in SPADA. 

Definition: Let P1 and P2 be two patterns. Then P1 is more general than ?P2 under 
θ-subsumption, denoted as P1 ≥θ? P2, if and only if P2 θ-subsumes P1. 

A graphical representation of the lattice spanned by ≥θ including the queries reported in 
example 3 is shown in Figure 6. 

Figure 5: A high-level view of the levelwise mining algorithm SPADA. 

Cycle on the level (l ≥ 1) of the spatial hierarchies  
Find large 1-atomsets at level l 
Cycle on the depth (k  > 1) of search in the pattern space 

Generate candidate k-atomsets at level l from large (k-1)-atomsets  
Generate large k-atomsets at level l from candidate k-atomsets 

Until the user-defined maximum depth 
Until the user-defined maximum granularity level M 
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For θ-subsumption the following properties hold: 

• reflexivity: P ≥θ P;  

• transitivity: P1 ≥θ P2 and P2 ≥θ P3, then P1 ≥θ P3; 

• decidability: a procedure exists to decide if P1 ≥θ P2. 

The anti-symmetric property does not hold for θ-subsumption, therefore θ-subsumption is a 
quasi-ordering. It follows that, given two queries such that P1 ≥θ P2 and P2 ≥θ P1, we 
cannot conclude that P1 and P2 are equal up to renaming, i.e. P1 and P2 are not alphabetic 
variants (4). As shown below, this feature has to be taken into account during the search. 

A quasi-ordered set of patterns can be searched by a refinement operator, namely a 
function which computes a set of refinements of a pattern. In particular, we need a 
refinement operator under θ-subsumption that enables the bottom-up search of the pattern 
space from the most specific to the most general patterns. 

Definition: Let <G, ≥θ> be a pattern space ordered according to ≥θ. A downward 
refinement operator under θ-subsumption is a function ρ such that 
ρ(P) ⊆ {Q | P ≥θ?Q}. 

                                                                 
(4)  Let E and F be two expressions. Then E and F are variants, denoted E ≈ F, if and only if substitutions θ 

and σ exist such that E = Fθ and F = Eσ. We also say that E is an alphabetic variant of F. For instance, f(X) 
and f(Y) are alphabetic variants.  

Figure 6: Example of pattern space structured according to ≥θ 
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It is noteworthy that ≥θ on patterns represented as Datalog queries is monotone with 
respect to support, which is the criterion for candidate evaluation in SPADA. Therefore, 
the refinement operator drives the search towards patterns with decreasing support. 
Moreover, all refinements ρ(P) of an infrequent pattern P are infrequent. This is the first-
order counterpart of one of the properties holding in the family of the a priori-like 
algorithms [1], on which the pruning criterion is based. 

For each granularity level (l), SPADA generates and evaluates candidates by searching the 
pattern space. The candidate generation phase consists of a refinement step followed by 
a pruning step. The former applies the refinement operator under θ-subsumption to patterns 
previously found to be frequent by preserving the property of linkedness [17]. The latter 
mainly involves verifying that candidate patterns do not θ-subsume any infrequent pattern. 
Further pruning criteria have been implemented in SPADA. In particular, the system 
checks that candidates are not alphabetic variants of previously discovered patterns. The 
complexity of this test is O(n2), where n is the number of atoms in the two patterns to be 
compared. However, this test is performed an exponential number of times, thus making the 
overall computational cost very high. Solutions have been proposed by Nijssen and 
Kok [27] to gain better performances in the general case of relational association rules. In 
the context of multiple-level relational association rules, different strategies have been 
identified by Lisi and Malerba [20]. The candidate evaluation phase is performed by 
comparing the support of the candidate pattern with the minimum support threshold set for 
the level being explored. If the pattern turns out not to be a large one, it is rejected. As for 
the support count, the candidate is transformed into an existential query whose answer set 
supplies all the substitutions that make the pattern true in D(S). In particular, the number of 
different bindings for the variable which is the placeholder for reference objects is assumed 
as the absolute frequency of the pattern in D(S). 

A rough preliminary remark on the computational complexity of SPADA leads to the 
notorious trade-off between expressiveness and efficiency in first-order representations. 
Indeed, it is well known that a simple matching of two expressions with commutative and 
associative operators (such as the logical OR of atoms in a clause) is NP-complete [12]. 
Therefore, any known algorithm that checks the coverage of an atom set or that 
equivalently evaluates a query with respect to a relational database has an exponential 
complexity. Nevertheless, it has also been proved that queries with up to k  atoms, where 
each atom contains at most j terms, can be evaluated in polynomial time [7]. Whether these 
constraints are applicable to the domain of spatial data analysis is still under investigation. 

Related to efficiency is scalability. Indeed, studies on the learnability theory have shown 
that current ILP algorithms would scale relatively well as the number of examples or facts 
in the background knowledge increases. However, they would not scale well with the 
number of arguments of the predicates (relations) involved, and in some cases with the 
complexity of the patterns being searched. The use of declarative bias  is usually 
suggested to improve scalability. It is a set of constraints on spatial patterns and association 
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rules that guide the application of the refinement operator ρ during the candidate generation 
phase. Indeed, a refinement step consists of adding one or more atoms from L[l] to the 
pattern to be refined. The more restrictions we put on the patterns, the smaller the search 
space, and hence the faster its search. In general, there is a trade-off between the 
efficiency of an ILP system and the quality of the patterns it comes up with. 

2.3. Integrating SPADA with other software components 

The application of the ILP approach to spatial databases is made possible by a middle -layer 
module for feature extraction, as shown in Figure 7. 

This layer is essential to cope with one of the main issues of spatial data mining, namely the 
requirement of complex data transformation processes to make spatial relations explicit. 

This function is partially supported by the spatial database (SDB), which offers spatial data 
types in its data model and query language and supports them in its implementation, 
providing at least spatial indexing and efficient algorithms for spatial join [13]. Thus spatial 
databases supply an adequate representation of both single objects and spatially related 
collections of objects. In particular, the abstraction primitives for spatial objects are point, 
line and region. Among the operations defined on spatial objects, spatial relationships are 
the most important because they make it possible, for example, to ask for all objects in a 
given relationship with a query object. Egenhofer and Herring [10] proposed the 
nineintersection model to categorise binary topological relations between arbitrary spatial 
objects. Examples are the relation meet between two regions and the relation crosses 
between a region and a line. The nine-intersection model is implemented in the Oracle 
Spatial cartridge to support the computation of some topological relations. 

Many spatial features (relations and attributes) can be extracted from spatial objects stored 
in SDB. They can be categorised as follows: 

(i) geometric, that is, based on the principles of Euclidean geometry; 

(ii) directional, that is, regarding relative spatial orientation in two or three dimensions; 

Figure 7: Integration of SPADA with other software modules which support spatial feature 
extraction (Featex) and discretisation of numerical features (RUDE). Additional input to 
SPADA, such as declarative bias and background knowledge, is directly provided by the user. 

Query 

 interpreter 
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(iii) topological, that is, binary relations that preserve themselves under topological 
transformations such as translation, rotation and scaling; 

(iv) hybrid, that is, features which merge properties of two or more of the previous three 
categories. 

This variety requires for the development of a feature extractor module, named Featex, 
which also enables the coupling of SPADA with the SDB. Featex is implemented as an 
Oracle package of procedures and functions implemented in the PL-SQL language. In this 
way, it is possible to formulate complex SQL queries involving both spatial and aspatial data 
(e.g. census data). The set of spatial features that can be extracted by this module is 
reported in Table  5. 

Since SPADA, like many other association rule mining algorithms, cannot process 
numerical data properly, it is necessary to perform a discretisation of numerical features 
with a relatively large domain. For this purpose, we have implemented the relative 
unsupervised discretisation algorithm RUDE [21] which proves to be suitable for dealing 
with numerical data in the context of association rule mining. At the end of all this data 
processing, query results are stored in temporary database tables. An ad hoc PL-SQL 
function transforms these tuples into ground Datalog facts of D(S). 

Table 5: Spatial features extracted by the feature extractor module 

Feature  Meaning Type Values 

almost_parallel(Y,Z) 
Parallelism relation 
between Y and Z 

Hybrid 
relation 

{true, false} 

almost_perpendicular 
(Y,Z) 

Perpendicularity 
relation between Y and 

Z 

Hybrid 
relation 

{true, false} 

density(Y,Z) Area(Y)/Area(Z) 
Hybrid 
relation 

Real 

direction(Y) 
Geographic direction of 

object Y 
Directional 

attribute 

{north, east, 
north_west, 
north_east} 

distance(Y,Z) 
Distance between Y and 

Z 
Geometrical 

relation 
Real 

layer_name(Y) Object Y type 
Aspatial 
attribute 

Layer name 

line_shape(Y) Object Y shape 
Geometrical 

attribute 
{Straight, 

curvilinear} 

relate(Y,Z) 
Topological relation 

between Y and Z  
Topological 

attribute 

Type of 
topological 

relation 
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3. Application to Stockport census data 

In the context of the SPIN! project we investigated the application of spatial data mining 
techniques to some issues reported in the unitary development plans (UDP) of Stockport, 
one of the 10 metropolitan districts of Greater Manchester, United Kingdom. 

3.1. The data 

Spatial analysis is made possible by the use of the Ordnance Survey’s digital maps of the 
district, where several interesting layers are available, namely ED/ward/district boundaries, 
roads, bus priority lanes, and so on. In particular, Stockport is divided into 22 wards for a 
total of 589 EDs. By joining UK 1991 census data available at the ED summarisation level 
with ED spatial objects, it is possible to investigate socioeconomic issues from a spatial 
viewpoint. In total 89 tables, each having 120 attributes on average, have been made 
available for policy analysis. Census attributes provide statistics on the population (resident 
and present at the census time, ethnic group, age, marital status, economic position, and so 
on), on the households in each ED (number of households with n children, number of 
households with n economically inactive people, number of households with two cars, and 
so on) as well as on some services available in each ED (e.g. number of schools). 

For the application of our spatial association rule mining method we have focused our 
attention on transportation planning, which is one of the key issues in UDP. In the following 
subsection, we report results for the problem of characterising the area crossed by the M63 
motorway. For another application to the accessibility of the area around the Stepping Hill 
Hospital, see the paper by Malerba et al. [23]. 

3.2. Characterising the area crossed by the M63 motorway 
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One of the problems is a decision-making process concerning the M63 motorway. More 
precisely, we are asked to describe the area of Stockport served by the M63 (i.e. the wards 
of Brinnington, Cheadle, Edgeley, Heaton Mersey, South Reddish) from the sociological 
viewpoint, in order to provide some hints for transport planners. The data considered in this 
analysis concerns census statistics on commuters. The description of the area is expressed 
by some spatial association rules at two levels of granularity. A hierarchy for the Stockport 
ED layer has been obtained by grouping EDs on the basis of the ward they belong to (see 

Figure 8) and expressed as Datalog facts in BK. 

Spatial association rules should relate EDs crossed by the M63 (reference objects) to EDs 
in the area served by the M63 (task-relevant objects) (see Figure 9). 

 
The relations of intersection (EDs–motorways) and adjacency (EDs–EDs) have been 
extracted for the area of interest and transformed into Datalog facts of D(S). The following 
census attributes have been selected for this experiment: 

Figure 8: An is a hierarchy for the Stockport ED layer 
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Figure 9: Stockport district and its EDs crossed by the M63 motorway 
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• s820161, persons who work outside the district of residence and drive to work; 

• s820213, employees and self-employed workers who reside in households with three or 
more cars and drive to work; 

• s820221, employees and self-employed workers who reside in households with three or 
more cars and work outside the district of residence. 

Since they refer to residents aged 16 and over, they have been normalised with respect to 
the total number of residents aged 16 and over (s820001). Moreover, they have been 
discretised by RUDE, since they are all numeric (more precisely, integer valued). At the 
end of this transformation process, each ED is described by three ground atoms in D(S), 
namely dr_out(X,  [a..b]), cars3_dr(X,  [a..b]), cars3_out(X, [a..b]), where X denotes an 
ED, while [a..b] is one of the intervals returned by RUDE. 

The key atom defining the reference objects in S is ed_on_M63(X), which is intensionally 
defined in the BK by means of the following rule: 

ed_on_M63(X):— intersect(X, m63) 

The BK also includes the declarative specification of some rules for spatial qualitative 
reasoning, namely 

can_reach(X, Y):— intersect(X, m63), intersect(Y, m63), Y\=X. 

close_to(X, Y):— adjacent_to(X, Z), adjacent_to(Z, Y), Y\=X. 

Finally, the following thresholds for support and confidence were defined: min_sup[1] = 0.7 
and min_conf[1] = 0.9 at the first level, and min_sup[2] = 0.5 and min_conf[2] = 0.8 at the 
second level. 

SPADA was run on the D(S) obtained. The runtime was 331 seconds for association rules 
at granularity level 1, and 310 seconds for level 2 (data refers to a Pentium III 1 GHz PC 
with 256 Mb RAM). 

Initially, the system returned 12 925 frequent patterns out of 74 338 candidate patterns, for 
a total of 12 466 strong rules. By analysing them we observed that some were actually 
useless, since they did not relate spatial data to census data. In other words, some 
association rules were pure spatial patterns, such as the following: 

ed_on_M63(X), can_reach(X,Y) à is_a(Y,ward_on_m63_ED)   (90.0 %, 100.0 %), 

which states that if an ED (Y) in the area served by the M63 can be reached from an ED 
crossed by the M63, then that ED is certainly (100 % confidence) an ED of a ward crossed 
by the M63. Despite the high support and confidence, this pure spatial pattern is of no 
interest for transport planners. 
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In a second run, we decided to constrain the search to patterns containing at least one of 
the census attributes dr_out(X, [a..b]), cars3_dr(X, [a..b]) and cars3_out(X, [a..b]). This is 
possible by specifying the following declarative bias: 

pattern_constraint([dr_out(_,_),cars3_dr(_,_),cars3_out(_,_)],1) 

where the first argument of the predicate pattern_constraint is the list of atoms to include 
in the relational pattern, while the second argument is the minimum number of required 
atoms of the list. 

The system generated 10 513 strong association rules in 1 520 seconds (time increased 
because of constraint checking for each generated pattern). Some of them have a very high 
support and confidence and provide the expert with some hints on the habits of commuters, 
such as the following association rule discovered at level 2: 

ed_on_M63(X), close_to(X,Y), is_a(Y,Bedgeley_ED) à 
cars3_out(X,[0.0..0.037]), cars3_dr(X,[0.0..0.037])                            (100 %, 100 %), 

which states that ‘if an ED crossed by the M63 (X) is close to another ED of the ward of 
Bedgeley (Y), then in that ED the percentage of people living in households with three or 
more cars and driving out of the district to work is very low (less than 4 %)’. It is important 
to point out that this is simply an association and does not define any kind of cause–effect 
relationship between the place where people live and their social habits. Another interesting 
spatial association rule at the same granularity level is the following: 

ed_on_M63(X), can_reach(X,Y) →  is_a(Y,heaton_mersey_ED), 
dr_out(Y,[0.2857..0.4782]), cars3_out(Y,[0.0..0,037])                    (80.0 %, 88.88 %), 

which states that ‘if an ED Y in the M63 area can be reached from another one crossed by 
the M63 motorway (X), then it is in the Heaton Mersey ward and has quite a high 
percentage of people that drive to work but do not live in households with three or more 
cars’. 

Finally, we decided to constrain the search space further, by asking only for those spatial 
patterns involving EDs where people have the same commuting habits. This time the first 
argument of the predicate pattern_constraint is a list of sub-lists, where each sub-list 
denotes a conjunction of atoms to be included in the relational patterns. In particular, we 
have defined the following declarative bias: 

pattern_constraint([[dr_out(X,Z), dr_out(Y,Z), X\=Y], 
[cars3_dr(X,Z), cars3_dr(Y,Z),X\=Y], [cars3_out(X,Z), cars3_out(Y,Z),X\=Y]], 1). 

SPADA found only 345 strong rules (79 for level 1 and 266 for level 2) in about 833 
seconds. The following is an example of association found by the system at the granularity 
level: 
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ed_on_M63(A) → can_reach(A,B), is_a(B,cheadle_ED), can_reach(A,C),C ≠ B, 
is_a(C,edgeley_ED), cars3_dr(C,[0.0..0.037]), cars3_dr(B,[0.0..0.037]) 

(90 %, 90 %), 

which states that from an ED crossed by the M63 it is possible to reach (by the same 
motorway) two EDs, one in Cheadle and one in Edgley, with the same low percentage of 
people living in families with three or more cars and driving out of the district to work. 

4. Conclusions 

In the above application, we have seen that some of the discovered rules actually convey 
new knowledge. However, the search for these ‘nuggets’ requires a lot of tuning and 
efforts by the data analyst in order to constrain the search space properly and discard most 
of the obvious or totally useless patterns hidden in the data. This is typical of exploratory 
data analysis and SPADA can be considered one of the most advanced tools that data 
analysts currently use in their iterative knowledge discovery process. 

One of the main limitations of SPADA, which is also a problem of many other relational 
data mining algorithms, is the requirement of some expertise in data and knowledge 
engineering. Indeed, the user should know how data are organised in the spatial database 
(e.g. layers and physical representation of objects), the semantics of spatial relations that 
can be extracted from digital maps, the meaning of some parameters used in the 
discretisation process and in the generation of spatial association rules, as well as the 
correct and most efficient way to specify the domain knowledge and declarative bias. In 
future work, we will investigate some ‘interestingness measures’ of rules for presentation 
purposes, so that the user can browse the output XML file of spatial association rules as 
simply as possible. In addition, we intend to study the relation with ‘symbolic data 
analysis’ [3] and the possibility of using the software developed in the context of the 
SODAS project for the analysis, summarisation and visualisation of rules obtained by 
generalising spatial objects covered by some spatial association rules returned by SPADA.  
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