
Intelligent Data Analysis 7 (2003) 541–566 541
IOS Press

Discovery of spatial association rules in
geo-referenced census data: A relational
mining approach

Annalisa Appice, Michelangelo Ceci, Antonietta Lanza, Francesca A. Lisi and
Donato Malerba
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Abstract. Census data mining has great potential both in business development and in good public policy, but still must be solved
in this field a number of research issues. In this paper, problems related to the geo-referenciation of census data are considered.
In particular, the accommodation of the spatial dimension in census data mining is investigated for the task of discovering
spatial association rules, that is, association rules involving spatial relations among (spatial) objects. The formulation of a new
method based on a multi-relational data mining approach is proposed. It takes advantage of the representation and inference
techniques developed in the field of Inductive Logic Programming (ILP). In particular, the expressive power of predicate logic
is profitably used to represent both spatial relations and background knowledge, such as spatial hierarchies and rules for spatial
qualitative reasoning. The logical notions of generality order and of the downward refinement operator on the space of patterns
are profitably used to define both the search space and the search strategy. The proposed method has been implemented in the
ILP system SPADA (Spatial Pattern Discovery Algorithm). SPADA has been interfaced both to a module for the extraction of
spatial features from a spatial database and to a module for numerical attribute discretization. The three modules have been
used in an application to urban accessibility of a hospital in Stockport, Greater Manchester. Results obtained through a spatial
analysis of geo-referenced census data are illustrated.

1. Introduction

Most countries of the world conduct population and economic censuses at regular intervals. Population
census information is of great value in planning public services for governments at all levels, such as
cities, counties, provinces, and states. Both population and economic census data are also used by
private companies or community organizations for various purposes, such as marketing studies, situating
new factories or shopping malls, developing social service programs. Therefore, the application of data
mining techniques to census data has great potential both in underpinning good public policy and in
supporting business developments. However, mining census data is not straightforward and requires
challenging methodological research.

In this work, we are mainly concerned with one of the research issues, namely the geo-referenciation
of census data. The practice of attaching socio-economic data to specific locations has increasingly
spread over the last few decades. In the UK, for instance, population census data are provided for each
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enumeration district (ED), the smallest areal unit for which census data are published. At the same time,
vectorized boundaries of the 1991 census EDs enable the investigation of socio-economic phenomena
in association with the geographical location of EDs. These advances cause a growing demand for
more powerful data analysis techniques that can link population data to their spatial, or, more precisely,
geographical distribution.

Advances in spatial data structures [16], spatial reasoning [10], and computational geometry [38]
have paved the way for the study of knowledge discovery in spatial data, and, more specifically, in
geo-referenced data.Spatial data mining methods have been proposed forthe extraction of implicit
knowledge, spatial relations, or other patterns not explicitly stored in spatial databases [23].

Knowledge discovered from spatial data can be in various forms including classification rules, which
describe the partition of the database into a given set of classes [22], clusters of spatial objects [35,39],
patterns describing spatial trends, that is, regular changes of one or more non-spatial attributes when
moving away from a given start object [15], and subgroup patterns, which identify subgroups of spatial
objects with an unusual, an unexpected, or a deviating distribution of a target variable [20].

In this paper, we focus our attention on the specific task of discoveringspatial association rules, that
is, association rules involving spatial objects and relations. Association rules are a class of regularities
introduced by Agrawal et al. [1] that can be expressed by an implication of the form:

P → Q(s, c),

whereP andQ are a set of literals, calleditems, such thatP ∩Q = Ø, the parameters, calledsupport,
estimates the probabilityp(P ∪ Q), and the parameterc, called confidence, estimates the probability
p(Q|P ). We call an association ruleP → Q spatial, if P ∪Q is aspatial pattern, that is, it expresses a
spatial relationship among spatial objects.

The problem of mining spatial association rules has already been tackled by Koperski and Han [21],who
implemented the module Geo-associator of the spatial data mining system GeoMiner [18]. However,
the method implemented in Geo-associator suffers from severe limitations due to the restrictive data
representation formalism, known assingle-table assumption [41]. More specifically, it is assumed that
data to be mined are represented in a single table (or relation) of a relational database, such that each row
(or tuple) represents an independent unit of the sample population and columns correspond to properties
of units. In spatial data mining applications this assumption turns out to be a great limitation. Indeed,
different geographical objects may have different properties, which can be properly modeled by as many
data tables as the number of object types. In addition, attributes of the neighbors of some spatial object
of interest may influence the object itself, hence the need for representing object interactions.

The recently promoted (multi-)relational approach to data mining [9] looks for patterns that involve
multiple relations of a relational database. Thus data taken as input by these approaches typically consists
of several tables and not just a single one, as is the case in most existing data mining approaches. Patterns
found by these approaches are calledrelational and are typically stated in a more expressive language
than patterns defined in a single data table. Typically, subsets offirst-order logic, which is also called
predicate calculus or relational logic, are used to express relational patterns.

Considering this strong link with logics, it is not surprising that many algorithms for multi-relational
data mining originate from the field ofinductive logic programming (ILP) [8,25,34,36]. Extending a
single table data mining algorithm to a relational one is not trivial. Efficiency is also very important,
as even testing a given relational pattern for validity is often computationally expensive. Moreover, for
relational pattern languages, the number of possible patterns can be very large and it becomes necessary
to limit their space by providing explicit constraints (declarative bias).
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However, miningspatial association rules is a more complex task than miningrelational association
rules, whose solutions have already been reported in the literature [7]. Two further degrees of complexity
are:

1. the implicit definition of spatial relations and
2. the granularity of the spatial objects.

The former is due to the fact that the location and the extension of spatial objectsimplicitly define spatial
relations such as directional and topological relations. Therefore, complex data transformation processes
are required to make spatial relations explicit, as in the application of machine learning techniques to
topographic map interpretation in [28].

The latter refers to the fact that spatial objects can be described at multiple levels of granularity. For
instance, if spatial objects are regions with some administrative autonomy, such as wards, districts and
counties, they can be organized hierarchically as follows:

Ward → District → County

based upon theinside relationship between locations. Interesting association rules are more likely to
be discovered at the lowest granularity level (ward) than at the county level. On the other hand, large
support is more likely to exist at higher granularity levels (District and County) rather than at a low level.

In the next section, a new algorithm for mining spatial association rules is reported. The algorithm,
named SPADA (Spatial Pattern Discovery Algorithm), is based on an ILP approach to relational data
mining and permits the extraction of multi-level spatial association rules, that is, association rules
involving spatial objects at different granularity levels. Details on both the interface of SPADA with a
spatial database and the feature extraction process are reported in Section 3. Finally, the application of
SPADA to a data mining task involving UK census data is reported in Section 4.

2. Mining spatial association rules

The discovery of spatial association rules is a descriptive mining task aiming to detect associations
betweenreference objects and sometask-relevant objects. The former are the main subject of the
description, that is, the observation units, while the latter are spatial objects that are relevant for the task
in hand and are spatially related to the former. For instance, if we are interested in investigating the
socio-economic phenomenon of deprivation of some urban areas, we can look for spatial association rules
that relate properties of some selected ED (reference objects) with properties of other spatial objects,
such as public transport stops (task relevant objects). A spatial association rule which states that (only)
“in 10% of reference EDs where the percentage of households with no car is high, there is a public
transport stop” can lead to the conclusion that there are some seriously deprived areas in the examined
territory. An indication of the gravity of this socio-economic phenomenon is given by the support of the
rule: if the percentage is high (e.g., 80%), then there are many reference EDs with a high percentage of
no-car-owning households which are not served by public transportation.

First-order logic is a useful tool for the formal representation of a spatial association rule. For instance,
the association rule in the above example can be easily expressed as follows:

is a(X, ed) no-car-owning-households%(X,high) →
contains(X,Y ) is a(Y, public transp stop) (80%, 10%).
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Fig. 1. Two spatial hierarchies and their association to three granularity levels (l).

This is a relational association rules, since the relational pattern

is a(X, ed) no-car-owning-households%(X,high) contains(X,Y )

is a(Y, public transp stop)

expresses some form of relationship, namely spatial containment, between any reference ED and some
spatial object classified as public transport stop. Since the relationship and the objects involved in this
pattern are of a spatial nature, the above implication is also aspatial association rule.

In spatial association rules, the items are first-order logicatoms, that is,n-ary predicates applied ton
terms. In the above example terms can be eithervariables, such asX andY , or constants, such ashigh
or bus or tram stop.

Since some kind of taxonomic knowledge on task-relevant objects may also be taken into account to
obtain descriptions at different granularity levels (multiple-level association rules), finer-grained answers
to the above query are also expected, such as:

is a(X, ed) no-car-owning-households%(X,high) →
contains(X,Y ) is a(Y, bus stop) (70%, 11%).

which provides more insight into the nature of the task relevant objectY , according to the spatial
hierarchy reported in Fig. 1. It is noteworthy that the support and the confidence of the last rule have
changed. Generally, the lower the granularity level, the lower the support of association rules. Therefore,
we follow Han and Fu’s [17] proposal to use different thresholds of support and confidence for different
granularity levels.

The problem of mining association rules can be formally stated as follows:
Given

– a spatial database (SDB),
– a set of reference objectsS,
– some setsRk, 1 � k � m, of task-relevant objects,
– a background knowledgeBK including some spatial hierarchiesHk on objects inRk,
– M granularity levels in the descriptions (1 is the highest while M is the lowest),
– a set of granularity assignmentsΨk which associate each object inHk with a granularity level,
– a couple of thresholdsminsup[l] andminconf[l] for each granularity level,
– a declarative biasDB that constrains the search space,
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Find strong multi-level spatial association rules.
An ILP approach to mining spatial association rules has already been reported in [31]. Representation

problems and algorithmic issues related to the application of our logic-based computational method are
discussed in the next two sub-sections.

2.1. Representing spatial data and background knowledge

The basic idea in our proposal is that a spatial database boils down to a deductive relational database
(DDB) once the spatial relationships between reference objects and task-relevant objects have been
extracted. More precisely, we pre-process data stored in a spatial database to represent it in a deduc-
tive database. For instance, spatial intersection between objects is represented in a derived relation
intersects(X,Y).

As observed by Kl̈osgen and May [20] this approach has some disadvantages, such as high computa-
tional burden, redundant data storage and loose integration between a GIS and the data mining method.
However, there are at least two equally important advantages. First, once the data is pre-processed the
calculation has not to be repeated, e.g. by constructing join indices. This is important in explorative
data analysis, where the main effort is in analyzing data along several dimensions and according to a
progressive refinement approach. The case in which an expert decides to throw away selected data and
to consider a new data set occurs less frequently than the case in which the expert works on the same
data by tuning the parameters of the data mining tool. Second, the expressive power of first-order logic
in databases also allows us to specify a background knowledge BK, such as spatial hierarchies and a
domain specific knowledge expressed as sets of rules. In particular, the specification of a domain specific
knowledge permits the search for patterns which could not be otherwise found in the spatial database.
The rules defining the domain specific knowledge are stored in the intensional part of the DDB and can
support, amongst other things, qualitative spatial reasoning.

Henceforth, we denote the DDB in handD(S) to mean that it is obtained by adding the data extracted
from SDB, regarding the set of reference objectsS, to the previously suppliedBK. The ground facts1

in D(S) can be grouped into distinct subsets: each group, uniquely identified by the corresponding
reference objects ∈ S, is calledspatial observation and denotedO[s]. We define the set:

R(s) = {ri|∃k : ri ∈ Rk and a ground fact α(s, ri) exists in D(S)}
as the set of task-relevant objects spatially related tos. The setO[s] is given by

O[s] = O[s|R(s)] ∪ Uri∈R[s]O[ri|S],
where:

– O[s|R(s)] contains properties ofs and spatial relations betweens andr i

– O[ri|S] contains properties ofri and spatial relations betweenri and somes′ ∈ S.

In an extreme case,O[s] can coincide withD(S). This is the case in whichs is spatially related to all
task-relevant objects. The unique reference object associated to a spatial observation allows us to define
the support and the confidence of a spatial association rule (see the definition of spatial association rule

1In this work we assume that ground facts concern either taxonomic “isa” relationships or binary spatial relationshipsα(s, r)
or object properties.
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below). Note that the notion of spatial observation in SPADA adapts the notion ofinterpretation, which
is common to many relational data mining systems [9], to the case of spatial databases.

LetA = {a1, a2, . . . , at} be a set of Datalog atoms whose terms are either variables or constants [4].
Predicate symbols used forA are all those permitted by the user-specified declarative bias, while the
constants are only those defined inD(S). The atom denoting the reference objects is calledkey atom.
Conjunctions of atoms onA are calledatomsets [6] like the itemsets in classical association rules. In
our framework, a language of patternsL[l] at the granularity levell is a set of well-formed atomsets
generated onA. Necessary conditions for an atomsetP to be inL[l] are the presence of the key atom,
the presence of taxonomic “isa” atoms exclusively at the granularity levell, the linkedness [19], and
safety. In particular, the last property guarantees the correct evaluation of patterns when the handling of
negation is required. To a patternP we assign an existentially quantified conjunctive formulaeqc(P )
obtained by turningP into a Datalog query.

Definition. A pattern P covers an observationO[s] if eqc(P ) is true in O[s] ∪BK.

Definition. Let O be the set of spatial observations in D(S) and OP denote the subset of O containing
the spatial observations covered by the pattern P . The support of P is defined as σ(P ) = |O P |/|O|.

Definition. A spatial association rule in D(S) at the granularity level l is an implication of the form

P → Q(s%, c%)

whereP ∪ Q ∈ L[l], P ∩ Q = Ø, P includes the key atom and at least one spatial relationship is in
P ∪Q. The percentagess% andc% are respectively called thesupport and theconfidence of the rule,
meaning thats% of spatial observations inD(S) is covered byP ∪ Q andc% of spatial observations
in D(S) that is covered byP is also covered byP ∪ Q. The support and the confidence of a spatial
association ruleP → Q are given bys = σ(P ∪Q) andc = ϕ(Q|P ) = σ(P ∪Q)/σ(P ).

In multi-level association rule mining, anancestor relation between two patterns at different granularity
levelsP ∈ L[l] andP ′ ∈ L[l′], l < l′, exists if and only ifP ′ can be obtained fromP by replacing
each spatial objecth ∈ Hk at granularity levell = Ψk(h) with a spatial objecth′ < h in Hk, which is
associated with the granularity levell′ = Ψk(h′).

The frequency of a pattern depends on the granularity level of task-relevant spatial objects.

Definition. Let minsup[l] and minconf [l] be two thresholds setting the minimum support and the
minimum confidence respectively at granularity level l. A pattern P is large (or frequent) at level
l if σ(P ) � minsup[l] and all ancestors of P with respect to the hierarchies Hk are large at their
corresponding levels. The confidence of a spatial association rule P → Q is high at level l if ϕ(Q|P ) �
minconf [l]. A spatial association rule P → Q is strong at level l if P ∪Q is large and the confidence is
high at level l.

The definition of the strong spatial association rule given above suggests that the generation of
association rules at different granularity levels should proceed from the most general towards the most
specific granularity levels. This is the approach followed in the ILP system SPADA, which has been
developed for mining multi-level association rules in spatial databases. In the following section we
explain how SPADA performs its search in the space of patterns at a given granularity levell, that is,
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Find large 1-atomsets at level l 
Cycle on the depth (k > 1) of search in the pattern space 

1. Generate candidate k-atomsets at level l from large (k-1)-atomsets by 
applying the refinement operator ρ 

2. Prune candidates that θ-subsume infrequent patterns 
3. Prune candidates equivalent under θ-subsumption 
4. Evaluate candidates and generate large k-atomsets at level l from 

candidate k-atomsets 
Until the user-defined maximum depth

Fig. 2. Intra-level search implemented in SPADA.

in the space of patterns defined by the languageL[l] (intra-level search). Section 2.3 illustrates how
SPADA takes advantage of statistics computed at a levell when it searches in the ‘more specific’ space
at levell + 1 (inter-level search).

2.2. Intra-level search of the pattern space

Given a granularity levell and a pattern languageL[l], the task of mining spatial association rules can
be split into two sub-subtasks:

1. Findlarge (or frequent) spatial patterns in the space defined byL[l];
2. Generate highly-confident spatial association rules at levell.

Algorithm design for frequent pattern discovery (step 1) has turned out to be a popular topic in data
mining. The blueprint for most algorithms proposed in the literature is the levelwise method [32], which
is based on a breadth-first search in the lattice spanned by a generality order� between patterns. Given
two patternsP1 andP2, we writeP1 � P2 to denote thatP1 is more general thanP2 or equivalently that
P2 is more specific thanP1. The space is searched one level at a time, starting from the most general
patterns and iterating between the candidate generation and candidate evaluation phases. The intra-level
search algorithm of SPADA implements the afore-mentioned levelwise method (see Fig. 2).

The pattern space is structured according to theθ-subsumption [37]. Many ILP systems adoptθ-
subsumption as the generality order for clause spaces. In this context we need to adapt the framework
to the case of atomsets. More precisely, the restriction ofθ-subsumption toDatalog queries (i.e.
existentially quantified conjunctions of Datalog atoms) is of particular interest.

Definition. Let Q1 and Q2 be two queries. Then Q1 θ-subsumes Q2 if and only if there exists a
substitution θ such that Q2θ ⊆ Q1.

We can now introduce the generality order adopted in SPADA.

Definition. Let P1 and P2 be two patterns. Then P1 is more general than P2 under θ-subsumption,
denoted as P1 � P2, if and only if P2 θ-subsumes P1.
θ-subsumption is a quasi-ordering, since it satisfies the reflexivity and transitivity property but not

the anti-symmetric property. The quasi-ordered set spanned by� θ can be searched by arefinement
operator, namely a function that computes a set of refinements of a pattern.
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Definition. Let 〈G,� θ〉 be a pattern space ordered according to � θ. A downward refinement operator
under θ-subsumption is a function ρ such that ρ(P ) ⊆ {Q|P �θ Q}.

In SPADA, the following operatorρ′ is used.

Definition. Let P be a pattern in L[l]. Then ρ′(P ) = {P ∧ ai|ai is an atom in L[l] }.
It can be easily proven thatρ′(P ) is a downward refinement operator underθ-subsumption, that is

P �θ Q for all Q ∈ ρ′(P ). Indeed,Q = P ∧ ai for an atomai in L[l]. By adopting the set notation we
can also writeQ = P ∪ {ai}. The inequalityP �θ P ∪ {ai} holds ifP ∪ {ai} θ-subsumesP , that is, a
substitutionθ exists such thatPθ ⊆ P ∪ {ai}. Obviously,θ is the empty substitution. The refinement
operatorρ′(P ) allows the generation of k-atomsets, that is atomsets of k literals, from (k-1)-atomsets.

It is noteworthy that�θ on patterns represented as Datalog queries is monotone with respect to support.

Property of θ-subsumption monotony.Let 〈G,�θ〉 be a pattern space ordered according to � θ. For
any two patterns P1 and P2 such that P1 �θ P2 we have that σ(P1) � σ(P2).

Therefore, the refinement operatorρ drives the search towards patterns with decreasing support. If a
patternP is infrequent, all its refinements inρ′(P ) are also infrequent. This is the first-order counterpart
of one of the properties holding in the family of the Apriori-like algorithms [1], on which the pruning
criterion is based. Indeed, the generation of patterns obtained as refinements of infrequent patterns can
be avoided, since those patterns have certainly a support lower than the user-defined threshold. This is
what happens at step 1) in the algorithm of Fig. 2.

Given a frequent patternP of k-1 atoms, it may happen that some patternQ ∈ ρ ′(P ) θ-subsumes
another infrequent patternP ′ of k′ atoms, withk′ < k. This means thatQ is certainly infrequent
because of the above monotony property, and its evaluation can be avoided (step 2 in Fig. 2). Additional
candidates not worth being evaluated are those equivalent underθ-subsumption to some other candidate
(step 3 in Fig. 2).

Finally, unpruned candidates are evaluated to check whether they are large (i.e., frequent) or not
(candidate evaluation phase,step 4). The evaluation of each generated patternP requires aθ-subsumption
test against some spatial observationsO[s]. Indeed, ifO[s] ∪BK θ-subsumesP , theneqc(P ) is true in
O[s] ∪BK, that isP coversO[s], according to the definition given in the previous section. Actually, in
SPADA the test of a patternQ ∈ ρ′(P ) is performed only against those spatial observations covered by
P , since, if a spatial observationO[s] is not covered byP , it cannot be covered byQ without violating
the transitive property ofθ-subsumption.

2.3. Inter-level search of the pattern space

As specified in Section 2.1, to be able to define a patternP as large (or frequent) at level l two
conditions must be satisfied, namely

i) σ(P ) � minsup[l] and
ii) all ancestors ofP with respect to the hierarchiesHk are large at their corresponding levels.

The second condition suggests an additional pruning strategy. LetP andQ be two frequent patterns
at levelsl andl + 1 respectively, such thatP is an ancestor ofQ. Suppose thatP has been refined into
the infrequent patternP ′ while searching in the pattern space at levell. When the space of patterns at
level l + 1 is explored andQ is refined, it is possible to generate a candidate patternQ ′ whose ancestor
isP ′. In this case,Q′ can be safely pruned, since it cannot be a large pattern without violating condition
ii). In order to support this additional pruning strategy, the refinement operator implemented in SPADA
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Fig. 3. Graph of intra-space and inter-space backward pointers.

uses a graph of backward pointers to be updated while searching. Backward pointers keep track of both
intra-space and inter-space search stages. Figure 3 gives an example of such a graph, where nodes,
dotted edges and dashed edges represent patterns, intra-space generality and inter-space parenthood,
respectively. The effectiveness of this computational solution is illustrated in [26].

2.4. From patterns to association rules

Once large patterns have been generated, it is possible to generate strong spatial association rules.
For each patternP , SPADA generates antecedents suitable for rules being derived fromP . The
consequent corresponding to an antecedent is simply obtained as a complement of atoms inP and not
in the antecedent. It is noteworthy that the generation of “good” rule antecedents is crucial. A naı̈ve
implementation would consist of a combinatorial computation step followed by a pruning step. The
former would output combinations of atoms occurring inP , while the latter would discard those that
are not well-formed, e.g. without the key atom in the antecedent or not respecting the constraints of
linkedness and safety. Backward pointers can also be exploited to speed up the generation of association
rules instead. In particular, SPADA recursively retrieves the predecessors of a frequent pattern and
returns only those yielding strong rules. This eliminates the need for evaluating rules a posteriori.

2.5. Filtering patterns and association rules

In many applications, not all large patterns or strong association rules are deemed interesting by the
user. The presentation of thousands of rules can discourage users from interpreting them in order to find
‘nuggets’ of knowledge. SPADA provides users with two filtering mechanisms, one for patterns and
one for association rules. They are part of the declarative bias that constrains the search space. More
precisely, the user can define the following pattern constraint:

pattern constraint(AtomList,Min occur),

whereAtomList is a list of atoms (for atomic constraints) or a list of atom lists (for conjuctive constraints),
while Min occur is a positive number which specifies the minimum number of constraints in the list that
must be satisfied. Patterns that do not satisfy this constraint are filtered out.
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In addition, the user can define a constraint either on the antecedent or on the consequent of a spatial
association rule, by specifying one of the following types of declarative bias:

body constraint(AtomList,Min occur)

head constraint(AtomList,Min occur),

whereAtomList andMin occur have the same meaning as in the pattern constraint. The application of
this pattern/rule filtering approach proved very useful in the application to census data mining.

3. Interfacing SPADA to the spatial database

The application of the ILP approach to spatial databases is made possible by a middle-layer module
for feature extraction. This layer is essential to cope with one of the main issues of spatial data mining,
namely the requirement of complex data transformation processes to make spatial relations explicit. This
function is partially supported by the spatial database (SDB), which offers spatial data types in its data
model and query language and supports them in its implementation, providing at least spatial indexing
and efficient algorithms for spatial join [16]. Thus spatial databases supply an adequate representation
of both single objects and spatially related collections of objects. In particular, the abstraction primitives
for spatial objects are point, line and region. Among the operations defined on spatial objects, spatial
relationships are the most important because they make it possible, for example, to ask for all objects in
a given spatial relationship with a query object.

3.1. Spatial features

Many spatial features (relations and attributes) can be extracted from spatial objects stored in SDB.
According to theirnature, features can be categorized as follows:

1. locational features, when they concern the location of objects;
2. geometrical features, when they are based on the principles of Euclidean geometry;
3. directional features, when they regard (relative) spatial orientation in 2D or 3D;
4. topological features, when they are relations preserving themselves under topological transforma-

tions such as translation, rotation, and scaling;
5. hybrid features, when they merge properties of two or more of the previous categories.

Locational features
Locational features are the simplest and more intrinsic features of spatial objects, since they are

the attributes concerning the location. Depending on the abstraction primitives, meaningful locational
features are: in the case of an areal object, the coordinates of the centroid, in the case of a linear object,
the coordinates of the extremes and the coordinates of the point itself.

Geometrical features
Geometrical features are the most classical ones, since they are based on principles of Euclidean

geometry. Generally, they depend on some distance/metric computations. Region area, perimeter,
length of axes and shape properties are typical examples of attributive geometrical features, while
distance and angle of incidence are typical examples of geometrical relations.
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Directional features
Directional features concern information about relative spatial orientation in 2D or 3D. They are

fundamental in image processing and are ‘natural’ relations to be considered when assuming as a reference
system a regular gridding system. Directional features are defined on the basis of theneighborhood
concept. The most common metrics adopted to define neighborhoods are thecity block distance (d 4), and
thechess board distance (d8). Given two points,p andq, with co-ordinates (i, j) and (h, k), respectively,
such distance functions are defined as follows:

d4(p, q) = |i− h|+ |j − k|
d8(p, q) = max{|i− h|, |j − k|}

Theneighbors of a pointp are the points having unitary distance fromp. The neighborhood of a point
p is constituted by all its neighbors and the pointp itself. When the 4-distance is adopted, there are
only 4 neighbors that are all adjacent top along the main directions: north, east, south, and west. When
the more general 8-distance is used, there are 8 neighbors which are adjacent top along all the possible
directions: north, north-east, east, south-east, south, south-west, west, and north-west.

Topological features
The 9-intersection model was proposed by Egenhofer and Franzosa [11] and Egenhofer and Her-

ring [12] to categorize binary topological relations in geographic databases. It is independent of the
concepts of distance and direction and is based upon purely topological properties. Currently, it can be
considered the only comprehensive framework for qualitative spatial reasoning

The 9-intersection model applies to spatial objects represented by regions, lines, and points. It is based
on the consideration that for each spatial objectA it is possible to distinguish three parts: its interior (A0),
its boundary (∂A) and its exterior (A−). In the case of spatial objects described by the Cartesian space
R2, regions have non-empty interiors, both lines and points have empty interiors, lines have non-empty
boundaries (coincide with them), while points have empty boundaries.

Binary topological relations between two objects can be described in terms of part intersections.
There are nine possible intersections between two parts, hence the name of the model. In Fig. 4 the
9-intersection model is concisely represented as a 3× 3 matrix.

Different topological relations have different 9-intersections, each being intersection empty (Ø) or
non-empty (¬Ø). By considering the possible combinations of the two valuesØ and¬Ø one can
distinguish29(= 512) binary topological relations. Not all the configurations correspond to physically
feasible relations between two spatial objects. Indeed, there are restrictions on the combinations of
values that could occur in the intersection matrix for the topological components of objects and only
those combinations that comply with consistency constraints for topological object relations can occur.

Relations between two regions
In the bidimensional Cartesian space 8 relations can hold between two regions with connected bound-

aries. The existence of topological relations corresponding to the 9-intersections has been verified by
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producing prototypical geometric configurations inR2. The relations correspond todisjoint, contains,
inside, equal, meet, covers, covered by, andoverlap. This set is mutually exclusive and closed for
regions, that is one and only one of the eight relations holds between any two regions.

Relations between two lines
Globally, there are 57 relations between two lines. In particular, 33 relations can be realized between

simple lines, that is, lines composed of only one segment. Twenty-four other relations exist specifically
for complex lines.

Relations between a region and a line
The topological relations between a region and a line involve two objects of different dimensions,

therefore conditions that hold between a region and a line do not necessarily hold between a line and
a region. There are 20 meaningful 9-intersections between a region and a line. One of them can be
realized only if the line is a non-simple line. In Fig. 5 twelve feasible 9-intersections between a region
and a line are reported. They are used later in the application to urban accessibility.

Relations between a point and a non-point
Since the boundary of a point is empty, it is irrelevant to analyze its three boundary intersections.

Consequently, there are only 6 significant intersections to describe the topological relations between a
non-point (region or line) B and a point A, and there are only 26 possible relations. Only 3 combinations
of intersections between a point and a non-point are physically feasible for point-region and point-line
configurations, respectively: They represent the three situations in which the point A isexternal to the
region or to the line B, the point A isinternal to the region or is on the line B, and, finally, the point A is
on the boundary of the region B oron one of the two extremes of the line B.

Relations between two points
In the case of two points, we observe that both boundaries are empty. Then, there are only 4

relevant intersections: the intersections between interiors and exteriors. There are only 2 combinations
of intersections for which the corresponding topological relations,disjoint andequal, can be realized
between two points.

Hybrid features
Hybrid spatial features merge properties of two or more spatial feature categories. For instance, the

features that express the conditions ofparallelism andperpendicularity of two lines are both topological
and geometrical. They are topological since they are invariant with respect to translation, rotation and
stretching, while they are geometrical since their semantics is based on the angle of incidence. Another
example of a hybrid spatial feature is represented by the relation of “faraway-west”, whose semantics
mixes both directional and geometric concepts. Moreover, we call hybrid those features that mix spatial
relations with aspatial properties, such as the feature that describes coplanar roads by combining the
condition of parallelism with information on the type of spatial objects (road).

3.2. Spatial features for census data mining

Three different kinds of spatial analysis can be performed on geo-referenced census data:
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Fig. 5. Twelve feasible relations between a region and a line according to the 9-intersection model.

– Intra-ED analysis: spatial features concern geographic objects enclosed within the boundaries of
an ED, while aspatial features are aggregated census data concerning a single ED. An example of
intra-ED analysis is the characterisation of a site (residential, industrial area, and so on) for land
allocation purposes.

– Inter-ED analysis: spatial features concern relations between EDs, while aspatial features are mainly
extracted from census data for all EDs. An example of inter-ED analysis is the evaluation of the
accessibility of a site for transport planning.
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– Mixed intra-inter ED analysis: it is the most complex situation in which both spatial relations
between geographic objects in an ED and spatial relations between EDs are required. An example
of mixed analysis is the study of the impact that land allocations might have on the transportation
system.

Consequently, the choice of spatial features that aremeaningful for census data mining depends on the
kind of analysis to be performed as well as on the specific task to be tackled.

For intra-ED analysis, man-made and natural features, ranging from houses and factories to roads
and rivers, seem to be the kind of data to be considered. First, the relations “contains”, “ inside” and
“ internal to” can be used to define which different objects are present in a specific ED, sincecontains
gives information on the existence of areal objects (such as the factories),inside gives information on
linear objects (such as the roads), andinternal to gives information on punctual objects (such as the
bus stops). Then, the topological relations existing between the specific ED and its different objects
and between the objects themselves might be used to obtain useful information. For example, if we are
interested in discovering whether an ED is strongly urbanized, we might define a hybrid relation that
checks the conditions of parallelism and perpendicularity between two roads, in order to detect a regular
grid system of roads, which is typical of an urban area. Actually, similar relations have been defined and
used for map interpretation tasks within planning contexts. In particular, they are described in Esposito
and Lanza [13] for the application of machine learning techniques to technical charts of the Apulian
region to identify the two land morphologies: cliffs and ravines. Descriptions of other features that have
been adopted for the applications of machine learning to topographic maps can be found in Esposito et
al. [14] and Malerba et al. [29]. These features were applied to localize some environmental categories
important for the environmental protection (i.e., fluvial landscapes, royal cattle tracks, systems of cliffs
and regular grid systems of farms) in the territory around the Ofanto river, Southern Italy.

For inter-ED analysis tasks, most of the spatial relations listed in the previous sub-section can be
useful. In particular, topological relations between a region and a line might be used to investigate
the accessibility of an ED from a road or a railway or a bus line. For example, if thedisjoint relation
(see Fig. 5) holds between a specific ED and a bus line of interest, we can conclude that the ED is
not reachable directly by means of that bus line, so we have to search for other bus lines. Moreover,
topological relations between two regions might be used to express spatial dependencies between EDs.
In fact, only two cases might occur between two EDs: they are adjacent, i.e. themeet relation holds, or
they are disjoint, i.e. thedisjoint relation holds. In addition, the geometrical relationdistance might be
useful to evaluate the closeness of bus stops to public services (hospitals, railway stations, and so on).
Finally, all the simple and hybrid features described in Section 3.2 might be useful for more complex
mixed analysis tasks.

3.3. Extracting features with FEATEX

In order to generate features of spatial objects (points, lines, or regions) a feature extractor module,
named FEATEX, has been devised. It enables a loose coupling of SPADA with the SDB. FEATEX is
implemented as an Oracle package of procedures and functions, each of which implements a different
feature. FEATEX functions can be used in SQL queries. For example, the query:

SELECT FEATEX.DIRECTION (x.geom)

FROM river va polyline x;
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returns the geographicdirection for each river in the tableriver va polyline. In this way, it is possible
to formulate complex SQL queries involving both spatial and aspatial data (e.g., census data). The
geographic direction of a spatial object is the only directional feature generated by means of FEATEX
for the application. The corresponding FEATEX function returns the geographic direction (“northeast”,
“north west”, “east”, “north”) of the object identified bygeom if the object is a line, “error” otherwise.
Its specification is the following:

FEATEX.DIRECTION(geom) RETURN VARCHAR2.

Three hybrid features extractable by means of FEATEX arealmost-parallel, almost-perpendicular
anddensity. The first two concern the parallelism and perpendicularity conditions respectively between
two spatial objects. The adverb ‘almost’ is justified by the fact that in cartography, as well as in nature,
it is almost impossible to find two exactly parallel or perpendicular objects. For instance, two contour
slopes are rarely exactly parallel, while two incidental roads do not always form a perfect angle of 90◦.
The feature concerning parallelism is extracted by means of the function:

FEATEX.ALMOST PARALLEL(geom1, geom2, tolerance)

RETURN VARCHAR2.

The first two parameters specify the geometries of the objects of interest. Thetolerance parameter is
used in distance computations. The function returns “true” if the condition holds, “false” otherwise.

The perpendicularity condition is extracted by means of the function:

FEATEX.ALMOST PERPENDICULAR(geom1, geom2, tolerance, angularTolerance)

RETURN VARCHAR2.

The definition of the function is based on the computation of the incidence angle between linear
objects. The last parameter is the tolerance on the incidence angle.

The density is computed by means of the function:

FEATEX.DENSITY(geom1, dim1, geom2, dim2) RETURN NUMBER,

wheredim1 anddim2 are the dimensional information arrays corresponding to the first and second
object. This function determines the relation between two objects according to the 9-intersection model,
and then it computes their areas by means of the Gauss method. If the object identified bygeom1
is contained in the object identified bygeom2, this function returns the ratio between the two areas,
otherwise it returns zero.

Two geometrical features can be generated by FEATEX. One is thedistance between two objects,
which can be computed by means of the function:

FEATEX.DISTANCE(geom1, dim1, geom2, dim2) RETURN NUMBER.

It returns the distance between two objects identified by the geometriesgeom1 andgeom2 and can be
used even when objects have different geometries. The other geometrical feature extracted isline shape.
Its corresponding function is:

FEATEX.LINE SHAPE(geom, tolerance) RETURN VARCHAR2.
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The tolerance parameter specifies the angular tolerance in radians for the computation. The function
returns the values “straight” or “curvilinear”, if the shape of the line identified bygeom is linear or
curvilinear, respectively. It returns “error” if the object identified bygeom is not a line.

A detailed description of the algorithms underlying the computation of the above features can be found
in [24], where an application to topographic map interpretation is also reported.

The topological features are computed by means of the following function:

FEATEX.RELATE(geom1, dim1, geom2, dim2) RETURN VARCHAR2.

It analyses the geometries of the two objects of interest, which are identified bygeom1 andgeom2,
to determine the spatial relationship that holds between them, based on the 9-intersection model. The
relate function returns the name of the topological binary relation (e.g. Disjoint, Along). In the case of
topological relations involving lines, only those defined for simple lines are computed.

The result of a FEATEX function is an object-relational table. To transform it into a set of atoms, a
function call is passed to the GENERATE function. The syntax of the GENERATE function is:

FEATEX.GENERATE(queryStr, predicateName, path, fileName, fileType)

RETURN INTEGER.

The function executes a generic SQL query, given as a string parameter (queryStr) and outputs a text
file where an atom is reported for each tuple. The predicate name used for the generated atoms is one of
the arguments of the GENERATE function. More specifically, the result of a query:

SELECT attr1, attr2, . . . , attrn

FROM table1, table2, tablem

WHERE condition,

whereattri(i = 1..n) can also be a FEATEX function, is translated into a set of the atoms:

predicateName(arg1, . . . , argn),

where(arg1, . . . , argn) is a tuple in the query set.
The parameterspath andfilename in the GENERATE function identify the output file, whilefiletype

specifies whether the output file is opened in append or write mode. The GENERATE function returns
1 if no errors occur, 0 otherwise.

3.4. Discretizing numerical attributes

Since SPADA, like many other association rule mining algorithms, cannot process numerical data
properly, it is necessary to perform a discretization of numerical features with a relatively large domain.
For this purpose we have implemented the relative unsupervised discretization algorithm RUDE [27],
which discretizes an attribute of a relational database in the context defined by other attributes. Formally,
the problem can be stated as follows:

Given

– a database tableT consisting ofm tuples,
– a continuous attribute inT to be discretized (target attribute),
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– a set of continuous attributes (source attributes) in T that define the context for the discretization of
the target attribute,

– a relative tolerance between split points (minimal difference)s

Find a set of split points that minimize loss of correlation between attributes.
The algorithm RUDE is based on two general procedures: aprediscretization procedure, used to

pre-process thesource attributes, and aclustering procedure, used to group target attribute values
corresponding to some source attribute value or interval. Therefore, several different “specializations” of
the RUDE algorithm can be generated by varying the two procedures. RUDE is implemented as a Java
package. Two prediscretization algorithms are implemented, namely equal width and equal frequency,
as well as two clustering algorithms,EM [40] andAutoClass [5]. RUDE proves to be suitable for dealing
with numerical data in the context of association rule mining. An experimental study not reported in
this paper showed that better performance can be obtained by using the equal width prediscretization
procedure and the Autoclass algorithm. This combination has been used in the application to mining
UK census data.

SPADA, FEATEX and RUDE have been integrated in the client-server system ARES, which is available
at the URL: http://www.di.uniba.it/∼malezba/software/ARES/.

4. Mining UK census data: An application to urban accessibility

In this section we describe a practical example that shows how it is possible to perform a spatial
analysis on UK 1991 census data. The application has been developed in the context of the European
project SPIN! (Spatial Mining for Data of Public Interest) [33]. Census data concern Stockport, one of
the ten districts in Greater Manchester, UK. In total 89 tables, each having 120 attributes on average, have
been made available for policy analysis. Census attributes provide statistics on the population (resident
at the census time, ethnic group, age, marital status, economic position, and so on), on the households
in each ED (number of households withn children, number of households withn economically inactive
people, number of households with two cars, and so on) as well as on some services available in each
ED (e.g., number of schools).

Stockport is divided into twenty-two wards for a total of 589 EDs. Spatial analysis is enabled by
the availability of vectorized boundaries of the 1991 census EDs as well as by other Ordnance Survey
digital maps of the district, where several interesting layers are available, namely roads, bus priority
lines, and so on. By joining UK 1991 census data available at the ED summarization level with some
spatial objects (e.g., EDs, roads, and railways) it is possible to investigate socio-economic issues from a
spatial viewpoint.

For the application of our spatial association rule mining method we have focused our attention on
transportation planning, more specifically, on an important issue reported in the Unitary development
Plan of Stockport, the accessibility of the Stepping Hill Hospital. The concept of “accessibility” appears
initially in the context of geographical science and was progressively introduced in transport planning in
the 1960’s and 1970’s. Many different definitions of accessibility and many ways to measure it can be
found in the literature. In this work we are interested in urban accessibility, which refers to local (inner
city) daily transport opportunities. A great effort has been made to define urbanaccessibility indices,
which can be used to assess/compare transportation facilities within different regions of an urban area
or between urban regions [2]. Accessibility is usually measured with respect to key activity locations
for individuals (e.g., home, workplace) and evaluates the transportation services provided in these key
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Fig. 6. Stockport map around Stepping-Hill Hospital. Spatial objects are the following: one-hundred and fifty-two task relevant
EDs (white regions), five task-relevant EDs (yellow regions), the only bus priority line (thick light-blue line), crossing roads
(blue lines), crossing railways (green lines).

locations to assess their relative advantages [3]. In this work, we are interested in the accessibility “to”
the Stepping Hill Hospital “from” the actual residence of people living within in the area served by the
hospital. Since (micro) data on the actual residence of each involved household are not available, we
study the accessibility at the ED level. Moreover, our study does not aim to synthesize a new accessibility
index, but to discover human interpretable patterns that can also contribute to directing resources for
facility improvement in areas with poor transport accessibility.

We decided to mine association rules relating five EDs close to the Stepping Hill Hospital (task relevant
objects) with one-hundred and fifty-two EDs within a distance of 10 Km of the hospital (reference
objects). The goal is to understand which reference EDs have access to the task relevant EDs. To define
the accessibility we used the Ordnance Survey data on transport network, namely the layers of roads,
railways and bus priority lines (see Fig. 6).

By using FEATEX we extracted facts concerning two topological relationships between EDs and the
only bus priority line reported in the spatial database for that area. Two examples are the following:

external touches to(ed 03bsfq29, bus priority line 1).

comes from(ed 03bsfl27, bus priority line 1).

The constantsed 03bsfq29 and ed 03bsfl27denote two distinct EDs,whilebus priority
line 1 is the only constant associated to a bus priority line. The topological relations
external touches to andcomes from are schematized in Fig. 5.

The set of topological relationships between EDs and roads is more varied. Some facts extracted by
FEATEX are the following:

along(ed 03bsfk28, road 15329).
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comes from(ed 03bsfb23, road 12212).

crosses(ed 03bsfc13, road 12245).

external ends at(ed 03bsfc01, road 11501).

external touches to(ed 03bsfb22, road 15260).

external comes from(ed 03bsfc01, road 11502).

goes out of(ed 03bsfh01, road 10884).

inside(ed 03bsfc01, road 11494).

internal ends at(ed 03bsfc01, road 11500).

runs along boundary ends inside(ed 03bsfg22, road 10884).

runs along boundary(ed 03bsfc23, road 12312).

In this case constantsroad # refer to roads crossing the interested area. It is noteworthy that the
topological relations above are mutually exclusive, that is, it is impossible for two of them to concern
the same pair of constants (ED, road).

Finally, we used FEATEX to extract spatial relationships between EDs and railways. Some examples
of facts generated by the Oracle package are:

along(ed 03bsfg25, rail 2453).

comes from(ed 03bsfc05, rail 2355).

crosses(ed 03bsfc13, rail 2391).

external ends at(ed 03bsfc05, rail 2389).

external touches to(ed 03bsfc20, rail 2389).

inside(ed 03bsfc01, rail 2341).

internal ends at(ed 03bsfc23, rail 2418).

overlapped shortcut(ed 03bsfh12, rail 2487).

runs along boundary ends inside(ed 03bsfg11, rail 2429).

runs along boundary(ed 03bsfc10, rail 2391).

The total number of facts is 1,147. Despite the complexity of the spatial computation performed by
FEATEX to extract these facts, the results are still not appropriate for the goals of our data analysis
tasks. Indeed, we are interested in relationships between EDs, such as those stating that two EDs are
‘connected’ by the same bus priority line or the same road or the same railway. To solve this problem
we specified the following rules to the domain specific knowledge:

1. crossed by bus line(X) :- external touches to(X,bus priority line 1).
2. crossed by bus line(X) :- comes from(X,bus priority line 1).
3. connected by bus line(X,Y) :- crossed by bus line(X), crossed by bus

line(Y), X �=Y.
4. crossed by road(X,Z) :- along(X,Z), is a(Z,road).
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Fig. 7. Two spatial hierarchies defined for the mining task concerning the accessibility of the Stepping Hill Hospital. They are
mapped into three granularity levels.

5. crossed by road(X,Z) :- comes from(X,Z), is a(Z,road).
6. crossed by road(X,Z) :- crosses(X,Z), is a(Z,road).
7. crossed by road(X,Z) :- external ends at(X,Z), is a(Z,road).
8. crossed by road(X,Z) :- external touches to(X,Z), is a(Z,road).
9. crossed by road(X,Z) :- goes out of(X,Z), is a(Z,road).

10. crossed by road(X,Z) :- inside(X,Z), is a(Z,road).
11. crossed by road(X,Z) :- internal ends at(X,Z), is a(Z,road).
12. crossed by road(X,Z) :- runs along boundary ends inside(X,Z), is a(Z,

road).
13. crossed by road(X,Z) :- runs along boundary(X,Z), is a(Z,road).
14. connected by road(X,Y) :- crossed by road(X,Z), crossed by road(Y,Z),

X �=Y.
15. crossed by rail(X,Z) :- along(X,Z), is a(Z,rail).
16. crossed by rail(X,Z) :- comes from(X,Z),is a(Z,rail).
17. crossed by rail(X,Z) :- crosses(X,Z),is a(Z,rail).
18. crossed by rail(X,Z) :- external ends at(X,Z),is a(Z,rail).
19. crossed by rail(X,Z) :- external touches to(X,Z),is a(Z,rail).
20. crossed by rail(X,Z) :- inside(X,Z),is a(Z,rail).
21. crossed by rail(X,Z) :- internal ends at(X,Z),is a(Z,rail).
22. crossed by rail(X,Z) :- overlapped shortcut(X,Z),is a(Z,rail).
23. crossed by rail(X,Z) :- runs along boundary ends inside(X,Z),is a(Z,

rail).
24. crossed by rail(X,Z) :- runs along boundary(X,Z),is a(Z,rail).
25. connected by rail(X,Y) :- crossed by rail(X,Z), crossed by rail(Y,Z),

X �=Y.
Here the use of the predicate isa hides the fact that two hierarchies have been defined for spatial objects

(see Fig. 7). Both hierarchies have depth three and are straightforwardly mapped into three granularity
levels.

The “connection’ predicates defined above express direct accessibility of an ED from another ED by
means of only one road or railway or bus line. To express a more complex concept of accessibility, we
added the following rules to the domain specific knowledge:

26. can reach by road(X,Y) :- connected by road(X,Y).
27. can reach by road(X,Y) :- connected by road(X,Z), can reach by road

(Z,Y),X �=Y.
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28. can reach by rail(X,Y) :- connected by rail(X,Y).
29. can reach by rail(X,Y) :- connected by rail(X,Z), can reach by rail

(Z,Y), X �=Y.
30. can reach by bus(X,Y) :- connected by bus line(X,Y).
31. can reach by bus(X,Y) :- connected by bus line(X,Z), can reach by bus

line(Z,Y), X �=Y.
These rules express a limited form of the transitivity property of ‘connectedness’. Indeed, they state

that an ED Y can be reached from another ED X if they are either directly connected by a road or a
railway or a bus line, or if there is another “intermediate” ED Z, which is directly connected to both X
and can be reached from Y (recursive definition).

To complete the domain specific knowledge, we added the following rules on the accessibility by
means of public transport:

32. can reach by road rail(X,Y) :- connected by road(X,Z), connected by
rail(Z,Y), X �=Y.

33. can reach by road bus(X,Y) :- connected by road(X,Z), connected by
bus line(Z,Y), X �=Y.

34. can reach by rail bus(X,Y) :- connected by rail(X,Z), connected by
bus line(Z,Y), X �=Y.

35. can reach by rail bus(X,Y) :- connected by bus line(X,Z), connected
by rail(Z,Y), X �=Y.

36. can reach by public transport(X,Y) :- can reach by bus(X,Y).
37. can reach by public transport(X,Y) :- can reach by rail(X,Y).
38. can reach by public transport(X,Y) :- can reach by rail bus(X,Y).

and the complementary definition of accessibility by means of roads alone:2

39. can reach only by road(X,Y) :- can reach by road(X,Y), \+can reach by
public transport(X,Y).

Until now, census data have not been used to define the accessibility of the Stepping Hill Hospital. All
extracted data and user-defined background knowledge are purely spatial. However, we can observe that
the accessibility of an area cannot be defined on the basis of the transport network alone. Even though
some roads connect a reference ED X with a task relevant ED Y, people living in X might have problems
reaching Y because they do not drive. This means that sociological data available in the census data
tables can be profitably used to give an improved definition of accessibility. We selected four attributes
on the percentage of households with zero, one, two, and three or more cars, we discretized them
with RUDE and generated the following four binary predicates for SPADA:no car, one car, two cars,
three more cars. The first argument of the predicate refers to an ED, while the second argument is an
interval returned by RUDE.

To complete the problem statement we specified a declarative bias both to constrain the search space
and to filter out some uninteresting spatial association rules. In particular, we asked for rules containing
only the following predicates:can reach by public transport, can reach only by road, no car, one car,
two cars, andthree more cars. In this way, we ruled out all spatial relations directly extracted by means
of FEATEX and all intermediate spatial relations that helped to define the two interesting ones, namely

2We used Sicstus Prolog notation ‘\+’ to express the negation as failure.
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the accessibility by public transport and the accessibility only by roads. Moreover, the specification of
the following filter:

pattern constraint([no car( , ), one car( , ), two cars( , ), three more cars( , )], 1).

prevents the generation of association rules with purely spatial patterns, that is, patterns showing only
spatial relations between spatial objects. Purely spatial patterns are indeed of no interest to the expert
in transport planning, since it is very likely that they convey no additional information to what he/she
already knows.

After some tuning of the parametersmin sup andmin conf for each granularity level, we decided to
run the system with the following parameter values:

min sup[1] = 0.2 min conf[1] = 0.5

min sup[2] = 0.1 min conf[2] = 0.4

min sup[3] = 0.1 min conf[3] = 0.3

Despite the above constraints, SPADA generated 944 rules in 88 secs from a set of 39,830 extracted or
inferred facts. More precisely, the system generated 28 rules in 38 secs at granularity level 1, 215 rules
in 17 secs at level 2, and 701 rules in 33 secs at level 3. The output rules are stored inM ×K XML files,
where M is the number of granularity levels (3) and K is the maximum number of refinement steps (6).
An additional index HTML file allows users to browse the output rules both by level and by refinement
step (see Fig. 8).

Two of the rules returned by SPADA at the first level are the following:

ed around stepping hill(A), can reach only by road(A,B),

is a(B, stepping hill ED) → no car(A, [0.228..0.653]) (38.15%, 56.31%)

ed around stepping hill(A), can reach by public transport(A,B),

is a(B, stepping hill ED) → no car(A, [0.266..0.653]) (21.71%, 61.11%).

The spatial pattern of the first rule occurs in fifty-eight distinct EDs. This means that from fifty-eight
distinct EDs within a distance of 10Km from Stepping Hill Hospital, it is possible to reach the hospital
only by road and the percentage of households with no car is quite high (between 22.8% and 65.3%).
Moreover, if from an ED A around Stepping Hill Hospital it is possible to reach one of the five task
relevant EDs only by road, then the confidence that A has a high percentage of households with no car
is 56.31%.

The spatial pattern of the second rule occurs in thirty-three distinct EDs. This means that from thirty-
three reference EDs whose percentage of households with no car is quite high it is possible to reach the
area of the Stepping Hill Hospital by public transport. The confidence in the second rule is a little higher
than the first association rule.

At granularity level 2, SPADA specializes the task relevant objectstepping hill ED considered at level
1. Only three specializations are possible for the five task relevant objects, namelyhazel grove ed,
davenport ed, great moor ed, which correspond to three distinct wards (Hazel Grove, Davenport, Great
Moor). The first rule above is specialized as follows:

ed around stepping hill(A), can reach only by road(A,B),
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Fig. 8. Browsing results of the SPADA system. The user can select the refinement (or specialization) step and the granularity
level. Rules are reported in the order in which they are generated, but they can be sorted in a decreasing order by confidence,
support, antecedent length and consequence length. In addition to usual confidence and support values, the name of the reference
EDs supporting the rule is shown. Results can be easily shown on a map.

is a(B, great moor ED) → no car(A, [0.228..0.653]) (38.15%, 56.31%)

ed around stepping hill(A), can reach only by road(A,B),

is a(B, davenport ED) → no car(A, [0.228..0.653]) (21.71%, 50.76%)

ed around stepping hill(A), can reach only by road(A,B),

is a(B,hazel grove ED) → no car(A, [0.228..0.653]) (21.71%, 50.76%).

As expected, the support of some rules have decreased. However, since both support and confidence
are greater than the corresponding user-defined thresholds, all the three rules are output by SPADA.
Similar considerations apply to granularity level 3, where specific task relevant EDs are reported.

Association rules found by SPADA in this application as well as in other related applications [30] are
of interest to urban planners, since they relate data on the transport network with data on sociological
factors. However, this study has three main limitations due to the nature of available data. First, we
considered 1991 Census data, which are now obsolete. Second, the crossing of a railway does not
necessarily mean that there is a station in an ED. Similar considerations can be made for bus priority
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lines and roads. Third, digital maps made available by the Ordnance Survey are devised for cartographic
reproduction purposes and not for data analysis. Hence, a road may appear to be ‘blocked’ in the digital
map, because it runs under a bridge. A solution to these problems is planned for the near future.

5. Conclusions

In this paper, a multi-relational approach to the problem of mining spatial association rules has been
illustrated in the context of an application to geo-referenced census data. This approach is justified by the
need to consider relationships implicitly defined between spatial objects. Spatial relationships and spatial
reasoning rules can be easily represented by means of first-order logic clauses, therefore, the definition of
the spatial data mining method has naturally been based on several concepts developed in computational
logics and, more specifically, in inductive logic programming. The interface to a spatial database is
another crucial issue in spatial data mining. In this work, a form of loose coupling between the rule
mining system SPADA and the SDB has been presented. It is based on the implementation of an Oracle
package for the extraction of a number of spatial and aspatial features initially represented as tuples and
then translated into atoms. Advantages and drawbacks of this approach have been briefly discussed in
the paper. The future implementation of a tight coupling will permit an experimental comparison of the
two solutions.

The specific census mining problem illustrated in this paper concerns the accessibility of an urban area.
Unlike typical accessibility studies, no index has been developed in this application. Rather, we aimed
at discovering human interpretable patterns that can also contribute to directing resources for facility
improvement in areas with poor transport accessibility. Indeed, some of the discovered rules seem to
convey new knowledge to urban planners, although the search for these “nuggets” requires a lot of tuning
and effort on the part of the data analyst in order to constrain the search space properly and discard
most of the obvious or totally useless patterns hidden in the data. One of the main limitations of our
system, which is also a problem of many other relational data mining systems, is the requirement of some
expertise in data and knowledge engineering. Indeed, the user should know how data are organized in the
spatial database (e.g., layers and physical representation of objects), the semantics of spatial relations that
can be extracted from digital maps, the meaning of some parameters used in the discretization process
and in the generation of spatial association rules, as well as the correct and most efficient way to specify
the domain knowledge and declarative bias. A solution to these usability problems will be investigated
in the context of specific projects for which actual competences of end-users are known.
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