Angelo Impedovo was a Research Fellow at Computer Science department of University of Bari Aldo Moro Research InterestsBig Data Analytics, Bioinformatics, Data Mining and Knowledge Discovery, Link Prediction, and Transfer Learning |
Angelo ImpedovoPhone: +39 080 5442203 |
Journal Articles | |
Book | |
Conference or Workshop | |
Editorship | |
Collection | |
Other |
Publications
2023
Angelo Impedovo, Giuseppe Rizzo, Antonio Di Mauro: Towards Open-Set Contract Clause Recognition. IEEE Big Data: 2767-2776 (2023) DOI: https://doi.org/10.1109/BigData59044.2023.10386681 | |
Giuseppe Rizzo, Angelo Impedovo: Supplier qualification document recognition through open-set recognition. DSAA: 1-10 (2023) DOI: https://doi.org/10.1109/DSAA60987.2023.10302610 |
2022
Angelo Impedovo, Emanuele Pio Barracchia, Giuseppe Rizzo: Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms. LOD (1): 156-166 (2022) DOI: https://doi.org/10.1007/978-3-031-25599-1_12 | |
Angelo Impedovo, Emanuele Pio Barracchia, Giuseppe Rizzo: Exploiting Named Entity Recognition for Information Extraction from Italian Procurement Documents: A Case Study. iiWAS: 60-74 (2022) DOI: https://doi.org/10.1007/978-3-031-21047-1_5 |
2021
Angelo Impedovo, Emanuele Pio Barracchia, Giuseppe Rizzo, Andrea Caprera, Elena LandrΓ²: EPICS: Pursuing the Quest for Smart Procurement with Artificial Intelligence. AIABI@AI*IA (2021) DOI: https://ceur-ws.org/Vol-3102/paper3.pdf |
2020
Angelo Impedovo, Paolo Mignone, Corrado Loglisci, Michelangelo Ceci: Simultaneous Process Drift Detection and Characterization with Pattern-Based Change Detectors. DS: 451-467 (2020) DOI: https://doi.org/10.1007/978-3-030-61527-7_30 | |
Michelangelo Ceci, Angelo Impedovo, Antonio Pellicani: Leveraging Multi-target Regression for Predicting the Next Parallel Activities in Event Logs. PKDD/ECML Workshops: 237-248 (2020) DOI: https://doi.org/10.1007/978-3-030-65965-3_15 | |
Angelo Impedovo, Corrado Loglisci, Michelangelo Ceci, Donato Malerba: jKarma: A Highly-Modular Framework for Pattern-Based Change Detection on Evolving Data. SEBD: 343-350 (2020) DOI: https://ceur-ws.org/Vol-2646/38-paper.pdf | |
Angelo Impedovo, Corrado Loglisci, Michelangelo Ceci, Donato Malerba: Condensed representations of changes in dynamic graphs through emerging subgraph mining. Eng. Appl. Artif. Intell. 94: 103830 (2020) DOI: https://doi.org/10.1016/j.engappai.2020.103830 | |
Angelo Impedovo, Corrado Loglisci, Michelangelo Ceci, Donato Malerba: jKarma: A highly-modular framework for pattern-based change detection on evolving data. Knowl. Based Syst. 192: 105303 (2020) DOI: https://doi.org/10.1016/j.knosys.2019.105303 | |
Angelo Impedovo, Corrado Loglisci, Michelangelo Ceci, Donato Malerba: Exploiting Pattern Set Dissimilarity for Detecting Changes in Communication Networks. Complex Pattern Mining: 137-152 (2020) DOI: https://doi.org/10.1007/978-3-030-36617-9_9 |
2019
Corrado Loglisci, Angelo Impedovo, Michelangelo Ceci, Donato Malerba: Mining Microscopic and Macroscopic Changes in Network Data Streams (Discussion Paper). SEBD (2019) DOI: https://ceur-ws.org/Vol-2400/paper-23.pdf | |
Angelo Impedovo, Michelangelo Ceci, Toon Calders: Efficient and Accurate Non-exhaustive Pattern-Based Change Detection in Dynamic Networks. DS: 396-411 (2019) DOI: https://doi.org/10.1007/978-3-030-33778-0_30 |
2018
Corrado Loglisci, Michelangelo Ceci, Angelo Impedovo, Donato Malerba: Mining microscopic and macroscopic changes in network data streams. Knowl. Based Syst. 161: 294-312 (2018) DOI: https://doi.org/10.1016/j.knosys.2018.07.011 | |
Corrado Loglisci, Giuseppina Andresini, Angelo Impedovo, Donato Malerba: Analyzing Microblogging Posts for Tracking Collective Emotional Trajectories. AI*IA: 123-135 (2018) DOI: https://doi.org/10.1007/978-3-030-03840-3_10 |
2017
Angelo Impedovo, Corrado Loglisci, Michelangelo Ceci: Temporal Pattern Mining from Evolving Networks. CoRR (2017) DOI: http://arxiv.org/abs/1709.06772 |
2016
Corrado Loglisci, Michelangelo Ceci, Angelo Impedovo, Donato Malerba: Mining Spatio-Temporal Patterns of Periodic Changes in Climate Data. NFMCP@PKDD/ECML: 198-212 (2016) DOI: https://doi.org/10.1007/978-3-319-61461-8_13 |