|
Malik AL-Essa is a PhD student at the Department of Computer Science, University of Bari Aldo Moro. He graduated from the University of Salerno in 2019 in Business Innovation and Informatics MSc degree. His PhD Project is entitled 'Machine Learning for Cyber Threat Investigation and Cyber Defense'. Research InterestsCybersecurity, Explainable AI, Machine Learning, Deep Leaning, Intrusion Detection, and Big Data Analytics. |
Malik AL-EssaPhone: +39 080 5442203 |
||||||||||||||
| Journal Articles | |
| Book | |
| Conference or Workshop | |
| Editorship | |
| Collection | |
| Other |
Publications
2024
| Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, Donato Malerba: Enhancing Cyber-threat detection coupling Deep Neural Ensemble Learning with XAI. Ital-IA: 182-187 (2024) DOI: https://ceur-ws.org/Vol-3762/529.pdf | |
| Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, Donato Malerba: PANACEA: a neural model ensemble for cyber-threat detection. Mach. Learn. 113(8): 5379-5422 (2024) DOI: https://doi.org/10.1007/s10994-023-06470-2 |
2023
| Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, Donato Malerba: Striving for Simplicity in Deep Neural Models Trained for Malware Detection. PKDD/ECML Workshops (3): 529-540 (2023) DOI: https://doi.org/10.1007/978-3-031-74633-8_40 | |
| Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, Donato Malerba: PANACEA: A Neural Model Ensemble for Cyber-Threat Detection. DSAA: 1-2 (2023) DOI: https://doi.org/10.1109/DSAA60987.2023.10302518 |
2022
| Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, Donato Malerba: An XAI-based adversarial training approach for cyber-threat detection. DASC/PiCom/CBDCom/CyberSciTech: 1-8 (2022) DOI: https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927842 | |
| Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, Donato Malerba: XAI to Explore Robustness of Features in Adversarial Training for Cybersecurity. ISMIS: 117-126 (2022) DOI: https://doi.org/10.1007/978-3-031-16564-1_12 |
2021
| Malik Al-Essa, Annalisa Appice: Dealing with Imbalanced Data in Multi-class Network Intrusion Detection Systems Using XGBoost. PKDD/ECML Workshops (2): 5-21 (2021) DOI: https://doi.org/10.1007/978-3-030-93733-1_1 |



