Annalisa Appice is an Assistant Professor at the Department of Computer Science, University of Bari, Italy. She received a Ph.D. in Computer Science with the thesis “Learning Reltional Model Trees”. She was visiting researcher at the University of Bristol (U.K.) and at the Jozef Stefan Institute (Slovenia). Her current research interests include knowledge discovery and data mining, big data analytics, stream data mining, spatio-temporal data mining, remote sensed data analysis, network data analysis and process mining. She has been Program co-Chair of DS 2020, ECML-PKDD 2015 and ISMIS 2017. She is serving/has served in the program committee of several international/national conferences, including: AAAI, IEEE ICDM, KDD, ICML, IJCAI, ECMLPKDD, CIKM, DEXA, ACM SAC. She is a member of the editorial board of the Journal of Intelligent Information Systems. She has participated in the organization (as co-chair) of six international workshops and one national workshop. She has acted as guest-editor of three special issues of international journals. She is member of the steering committee of ECML PKDD (2016-2018) and ISMIS (2018-2020). Research InterestsAnalysis and synthesis of algorithms for inductive inference: classification and model trees. Clustering, Association Rule Discovery, Associative Classification. Applications include Knowledge Discovery in Databases and Data Mining, (multi)Relational Data Mining, Data Stream Mining, Map Interpretation and Spatial Data Mining, Data Mining Query Language. |
Annalisa AppicePhone: +39 080 5443262 |
Journal Articles | |
Book | |
Conference or Workshop | |
Editorship | |
Collection | |
Other |
Publications
2024
Luca De Rose, Giuseppina Andresini, Annalisa Appice, Donato Malerba: VINCENT: Cyber-threat detection through vision transformers and knowledge distillation. Comput. Secur. 144: 103926 (2024) DOI: https://doi.org/10.1016/j.cose.2024.103926 | |
Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, Donato Malerba: PANACEA: a neural model ensemble for cyber-threat detection. Mach. Learn. 113(8): 5379-5422 (2024) DOI: https://doi.org/10.1007/s10994-023-06470-2 | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Donato Malerba: Enhancing Next Activity Prediction with Adversarial Training of Vision Transformers. SEBD: 349-358 (2024) DOI: https://ceur-ws.org/Vol-3741/paper17.pdf | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giuseppe Ieva, Donato Malerba: TSUNAMI - an explainable PPM approach for customer churn prediction in evolving retail data environments. J. Intell. Inf. Syst. 62(3): 705-733 (2024) DOI: https://doi.org/10.1007/s10844-023-00838-5 | |
Muhammad Imran, Annalisa Appice, Donato Malerba: Evaluating Realistic Adversarial Attacks against Machine Learning Models for Windows PE Malware Detection. Future Internet 16(5): 168 (2024) DOI: https://doi.org/10.3390/fi16050168 | |
Annalisa Appice, Hanane Azzag, Mohand-Said Hacid, Allel Hadjali, Zbigniew W. Ras: Foundations of Intelligent Systems - 27th International Symposium, ISMIS 2024, Poitiers, France, June 17-19, 2024, Proceedings ISMIS Lecture Notes in Computer Science 14670, Springer (2024), ISBN: 978-3-031-62700-2 DOI: https://doi.org/10.1007/978-3-031-62700-2 | |
Giuseppina Andresini, Annalisa Appice, Donato Malerba: Leveraging Sentinel-2 time series for bark beetle-induced forest dieback inventory. SAC: 875-882 (2024) DOI: https://doi.org/10.1145/3605098.3635908 |
2023
Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, Donato Malerba: PANACEA: A Neural Model Ensemble for Cyber-Threat Detection. DSAA: 1-2 (2023) DOI: https://doi.org/10.1109/DSAA60987.2023.10302518 | |
Giuseppina Andresini, Annalisa Appice, Donato Malerba: $\mathsf{SILVIA}$: An eXplainable Framework to Map Bark Beetle Infestation in Sentinel-2 Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 16: 10050-1006 (2023) DOI: https://doi.org/10.1109/JSTARS.2023.3312521 | |
Giuseppina Andresini, Annalisa Appice, Pasquale Ardimento, Andrea Antonio Brunetta, Antonio Giuseppe Doronzo, Giuseppe Ieva, Francesco Luce, Donato Malerba, Vincenzo Pasquadibisceglie: CENTAURO: An Explainable AI Approach for Customer Loyalty Prediction in Retail Sector. AI*IA: 205-217 (2023) DOI: https://doi.org/10.1007/978-3-031-47546-7_14 | |
Filippo Lorè, Pierpaolo Basile, Annalisa Appice, Marco de Gemmis, Donato Malerba, Giovanni Semeraro: An AI framework to support decisions on GDPR compliance. J. Intell. Inf. Syst. 61(2): 541-568 (2023) DOI: https://doi.org/10.1007/s10844-023-00782-4 | |
Giuseppina Andresini, Annalisa Appice, Roberto Gasbarro, Donato Malerba: GLORIA: A Graph Convolutional Network-Based Approach for Review Spam Detection. DS: 111-125 (2023) DOI: https://doi.org/10.1007/978-3-031-45275-8_8 | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Donato Malerba: DARWIN : An online deep learning approach to handle concept drifts in predictive process monitoring. Eng. Appl. Artif. Intell. 123: 106461 (2023) DOI: https://doi.org/10.1016/j.engappai.2023.106461 | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Nicola Fiorentino, Donato Malerba: STARDUST: A Novel Process Mining Approach to Discover Evolving Models From Trace Streams. IEEE Trans. Serv. Comput. 16(4): 2970-2984 (2023) DOI: https://doi.org/10.1109/TSC.2022.3215502 | |
Giuseppina Andresini, Annalisa Appice: Editorial: AI meets cybersecurity. J. Intell. Inf. Syst. 60(2): 277-279 (2023) DOI: https://doi.org/10.1007/s10844-022-00767-9 | |
Irena Koprinska, Paolo Mignone, Riccardo Guidotti, Szymon Jaroszewicz, Holger Fröning, Francesco Gullo, Pedro M. Ferreira, Damian Roqueiro, Gaia Ceddia, Slawomir Nowaczyk, João Gama, Rita P. Ribeiro, Ricard Gavaldà, Elio Masciari, Zbigniew W. Ras, Ettore Ritacco, Francesca Naretto, Andreas Theissler, Przemyslaw Biecek, Wouter Verbeke, Gregor Schiele, Franz Pernkopf, Michaela Blott, Ilaria Bordino, Ivan Luciano Danesi, Giovanni Ponti, Lorenzo Severini, Annalisa Appice, Giuseppina Andresini, Ibéria Medeiros, Guilherme Graça, Lee A. D. Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Diego Saldana Miranda, Konstantinos Sechidis, Arif Canakoglu, Sara Pidò, Pietro Pinoli, Albert Bifet, Sepideh Pashami: Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part I PKDD/ECML Workshops (1) Communications in Computer and Information Science 1752, Springer (2023), ISBN: 978-3-031-23618-1 DOI: https://doi.org/10.1007/978-3-031-23618-1 | |
Irena Koprinska, Paolo Mignone, Riccardo Guidotti, Szymon Jaroszewicz, Holger Fröning, Francesco Gullo, Pedro M. Ferreira, Damian Roqueiro, Gaia Ceddia, Slawomir Nowaczyk, João Gama, Rita P. Ribeiro, Ricard Gavaldà, Elio Masciari, Zbigniew W. Ras, Ettore Ritacco, Francesca Naretto, Andreas Theissler, Przemyslaw Biecek, Wouter Verbeke, Gregor Schiele, Franz Pernkopf, Michaela Blott, Ilaria Bordino, Ivan Luciano Danesi, Giovanni Ponti, Lorenzo Severini, Annalisa Appice, Giuseppina Andresini, Ibéria Medeiros, Guilherme Graça, Lee A. D. Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Diego Saldana Miranda, Konstantinos Sechidis, Arif Canakoglu, Sara Pidò, Pietro Pinoli, Albert Bifet, Sepideh Pashami: Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part II PKDD/ECML Workshops (2) Communications in Computer and Information Science 1753, Springer (2023), ISBN: 978-3-031-23633-4 DOI: https://doi.org/10.1007/978-3-031-23633-4 | |
Giuseppina Andresini, Annalisa Appice, Dino Ienco, Donato Malerba: SENECA: Change detection in optical imagery using Siamese networks with Active-Transfer Learning. Expert Syst. Appl. 214: 119123 (2023) DOI: https://doi.org/10.1016/j.eswa.2022.119123 |
2022
Giuseppina Andresini, Andrea Iovine, Roberto Gasbarro, Marco Lomolino, Marco de Gemmis, Annalisa Appice: Review Spam Detection using Multi-View Deep Learning Combining Content and Behavioral Features. itaDATA: 87-98 (2022) DOI: https://ceur-ws.org/Vol-3340/paper32.pdf | |
Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, Donato Malerba: An XAI-based adversarial training approach for cyber-threat detection. DASC/PiCom/CBDCom/CyberSciTech: 1-8 (2022) DOI: https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927842 | |
Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, Donato Malerba: XAI to Explore Robustness of Features in Adversarial Training for Cybersecurity. ISMIS: 117-126 (2022) DOI: https://doi.org/10.1007/978-3-031-16564-1_12 | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Donato Malerba: A multi-view deep learning approach for predictive business processes monitoring. SERVICES: 26 (2022) DOI: https://doi.org/10.1109/SERVICES55459.2022.00039 | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Donato Malerba: A Multi-View Deep Learning Approach for Predictive Business Process Monitoring. IEEE Trans. Serv. Comput. 15(4): 2382-2395 (2022) DOI: https://doi.org/10.1109/TSC.2021.3051771 | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Wil M. P. van der Aalst: PROMISE: Coupling predictive process mining to process discovery. Inf. Sci. 606: 250-271 (2022) DOI: https://doi.org/10.1016/j.ins.2022.05.052 | |
Giuseppina Andresini, Annalisa Appice, Francesco Paolo Caforio, Donato Malerba, Gennaro Vessio: ROULETTE: A neural attention multi-output model for explainable Network Intrusion Detection. Expert Syst. Appl. 201: 117144 (2022) DOI: https://doi.org/10.1016/j.eswa.2022.117144 | |
Giuseppina Andresini, Annalisa Appice, Daniele Iaia, Donato Malerba, Nicolò Taggio, Antonello Aiello: Leveraging autoencoders in change vector analysis of optical satellite images. J. Intell. Inf. Syst. 58(3): 433-452 (2022) DOI: https://doi.org/10.1007/s10844-021-00670-9 |
2021
Giuseppina Andresini, Annalisa Appice, Domenico Dell'Olio, Donato Malerba: Siamese Networks with Transfer Learning for Change Detection in Sentinel-2 Images. AI*IA: 478-489 (2021) DOI: https://doi.org/10.1007/978-3-031-08421-8_33 | |
Annalisa Appice: Keynote 4. SDS: 1 (2021) DOI: https://doi.org/10.1109/SDS54264.2021.9732090 | |
Annalisa Appice: AI meets Cybersecurity. FMEC: 1 (2021) DOI: https://doi.org/10.1109/FMEC54266.2021.9732573 | |
Malik Al-Essa, Annalisa Appice: Dealing with Imbalanced Data in Multi-class Network Intrusion Detection Systems Using XGBoost. PKDD/ECML Workshops (2): 5-21 (2021) DOI: https://doi.org/10.1007/978-3-030-93733-1_1 | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Donato Malerba: Leveraging Multi-view Deep Learning for Next Activity Prediction. ITBPM@BPM: 1-6 (2021) DOI: http://ceur-ws.org/Vol-2952/paper_290a.pdf | |
Giuseppina Andresini, Feargus Pendlebury, Fabio Pierazzi, Corrado Loglisci, Annalisa Appice, Lorenzo Cavallaro: INSOMNIA: Towards Concept-Drift Robustness in Network Intrusion Detection. AISec@CCS: 111-122 (2021) DOI: https://doi.org/10.1145/3474369.3486864 | |
Vincenzo Pasquadibisceglie, Giovanna Castellano, Annalisa Appice, Donato Malerba: FOX: a neuro-Fuzzy model for process Outcome prediction and eXplanation. ICPM: 112-119 (2021) DOI: https://doi.org/10.1109/ICPM53251.2021.9576678 | |
Annalisa Appice, Sergio Escalera, José A. Gámez, Heike Trautmann: Introduction to the special issue of the ECML PKDD 2021 journal track. Data Min. Knowl. Discov. 35(6): 2540-2541 (2021) DOI: https://doi.org/10.1007/s10618-021-00792-2 | |
Annalisa Appice, Sergio Escalera, José A. Gámez, Heike Trautmann: Introduction to the special issue of the ECML PKDD 2021 journal track. Mach. Learn. 110(10): 2991-2992 (2021) DOI: https://doi.org/10.1007/s10994-021-06062-y | |
Annalisa Appice, Angelo Cannarile, Antonella Falini, Donato Malerba, Francesca Mazzia, Cristiano Tamborrino: Leveraging colour-based pseudo-labels to supervise saliency detection in hyperspectral image datasets. J. Intell. Inf. Syst. 57(3): 423-446 (2021) DOI: https://doi.org/10.1007/s10844-021-00656-7 | |
Giuseppina Andresini, Annalisa Appice, Donato Malerba: A Two-Step Network Intrusion Detection System for Multi-Class Classification (Discussion Paper). SEBD: 259-266 (2021) DOI: http://ceur-ws.org/Vol-2994/paper27.pdf | |
Giuseppina Andresini, Annalisa Appice, Corrado Loglisci, Vincenzo Belvedere, Domenico Redavid, Donato Malerba: A Network Intrusion Detection System for Concept Drifting Network Traffic Data. DS: 111-121 (2021) DOI: https://doi.org/10.1007/978-3-030-88942-5_9 | |
Francesco Paolo Caforio, Giuseppina Andresini, Gennaro Vessio, Annalisa Appice, Donato Malerba: Leveraging Grad-CAM to Improve the Accuracy of Network Intrusion Detection Systems. DS: 385-400 (2021) DOI: https://doi.org/10.1007/978-3-030-88942-5_30 | |
Giuseppina Andresini, Annalisa Appice, Luca De Rose, Donato Malerba: GAN augmentation to deal with imbalance in imaging-based intrusion detection. Future Gener. Comput. Syst. 123: 108-127 (2021) DOI: https://doi.org/10.1016/j.future.2021.04.017 | |
Giuseppina Andresini, Annalisa Appice, Donato Malerba: Autoencoder-based deep metric learning for network intrusion detection. Inf. Sci. 569: 706-727 (2021) DOI: https://doi.org/10.1016/j.ins.2021.05.016 | |
Giuseppina Andresini, Annalisa Appice, Donato Malerba: Nearest cluster-based intrusion detection through convolutional neural networks. Knowl. Based Syst. 216: 106798 (2021) DOI: https://doi.org/10.1016/j.knosys.2021.106798 |
2020
Irena Koprinska, Michael Kamp, Annalisa Appice, Corrado Loglisci, Luiza Antonie, Albrecht Zimmermann, Riccardo Guidotti, Özlem Özgöbek, Rita P. Ribeiro, Ricard Gavaldà, João Gama, Linara Adilova, Yamuna Krishnamurthy, Pedro M. Ferreira, Donato Malerba, Ibéria Medeiros, Michelangelo Ceci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras, Peter Christen, Eirini Ntoutsi, Erich Schubert, Arthur Zimek, Anna Monreale, Przemyslaw Biecek, Salvatore Rinzivillo, Benjamin Kille, Andreas Lommatzsch, Jon Atle Gulla: ECML PKDD 2020 Workshops - Workshops of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020): SoGood 2020, PDFL 2020, MLCS 2020, NFMCP 2020, DINA 2020, EDML 2020, XKDD 2020 and INRA 2020, Ghent, Belgium, September 14-18, 2020, Proceedings PKDD/ECML Workshops Communications in Computer and Information Science 1323, Springer (2020), ISBN: 978-3-030-65965-3 DOI: https://doi.org/10.1007/978-3-030-65965-3 | |
Matteo Greco, Michele Spagnoletta, Annalisa Appice, Donato Malerba: Applying Machine Learning to Predict Closing Prices in Stock Market: A Case Study. MIDAS@PKDD/ECML: 32-39 (2020) DOI: https://doi.org/10.1007/978-3-030-66981-2_3 | |
Antonella Falini, Cristiano Tamborrino, Graziano Castellano, Francesca Mazzia, Rosa Maria Mininni, Annalisa Appice, Donato Malerba: Novel Reconstruction Errors for Saliency Detection in Hyperspectral Images. LOD (1): 113-124 (2020) DOI: https://doi.org/10.1007/978-3-030-64583-0_12 | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Donato Malerba, Giuseppe Modugno: ORANGE: Outcome-Oriented Predictive Process Monitoring Based on Image Encoding and CNNs. IEEE Access 8: 184073-184 (2020) DOI: https://doi.org/10.1109/ACCESS.2020.3029323 | |
Annalisa Appice, Grigorios Tsoumakas, Yannis Manolopoulos, Stan Matwin: Discovery Science - 23rd International Conference, DS 2020, Thessaloniki, Greece, October 19-21, 2020, Proceedings DS Lecture Notes in Computer Science 12323, Springer (2020), ISBN: 978-3-030-61527-7 DOI: https://doi.org/10.1007/978-3-030-61527-7 | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Donato Malerba: Predictive Process Mining Meets Computer Vision. BPM (Forum): 176-192 (2020) DOI: https://doi.org/10.1007/978-3-030-58638-6_11 | |
Annalisa Appice, Francesco Lomuscio, Antonella Falini, Cristiano Tamborrino, Francesca Mazzia, Donato Malerba: Saliency Detection in Hyperspectral Images Using Autoencoder-Based Data Reconstruction. ISMIS: 161-170 (2020) DOI: https://doi.org/10.1007/978-3-030-59491-6_15 | |
Annalisa Appice, Pietro Guccione, Emilio Acciaro, Donato Malerba: Detecting salient regions in a bi-temporal hyperspectral scene by iterating clustering and classification. Appl. Intell. 50(10): 3179-3200 (2020) DOI: https://doi.org/10.1007/s10489-020-01701-8 | |
Annalisa Appice, Pasquale Ardimento, Donato Malerba, Giuseppe Modugno, Diego Marra, Marco Mottola: Training in a Virtual Learning Environment: A Process Mining Approach. EAIS: 1-8 (2020) DOI: https://doi.org/10.1109/EAIS48028.2020.9122760 | |
Antonella Falini, Graziano Castellano, Cristiano Tamborrino, Francesca Mazzia, Rosa Maria Mininni, Annalisa Appice, Donato Malerba: Saliency Detection for Hyperspectral Images via Sparse-Non Negative-Matrix-Factorization and novel Distance Measures. EAIS: 1-8 (2020) DOI: https://doi.org/10.1109/EAIS48028.2020.9122749 | |
Annalisa Appice, Giuseppina Andresini, Donato Malerba: Clustering-Aided Multi-View Classification: A Case Study on Android Malware Detection. J. Intell. Inf. Syst. 55(1): 1-26 (2020) DOI: https://doi.org/10.1007/s10844-020-00598-6 | |
Giuseppina Andresini, Annalisa Appice, Nicola Di Mauro, Corrado Loglisci, Donato Malerba: Multi-Channel Deep Feature Learning for Intrusion Detection. IEEE Access 8: 53346-5335 (2020) DOI: https://doi.org/10.1109/ACCESS.2020.2980937 | |
Annalisa Appice, Yulia R. Gel, Iliyan Iliev, Vyacheslav Lyubchich, Donato Malerba: A Multi-Stage Machine Learning Approach to Predict Dengue Incidence: A Case Study in Mexico. IEEE Access 8: 52713-5272 (2020) DOI: https://doi.org/10.1109/ACCESS.2020.2980634 | |
Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras: Complex Pattern Mining - New Challenges, Methods and Applications Complex Pattern Mining Studies in Computational Intelligence 880, Springer (2020), ISBN: 978-3-030-36617-9 DOI: https://doi.org/10.1007/978-3-030-36617-9 | |
Giuseppina Andresini, Annalisa Appice, Donato Malerba: Dealing with Class Imbalance in Android Malware Detection by Cascading Clustering and Classification. Complex Pattern Mining: 173-187 (2020) DOI: https://doi.org/10.1007/978-3-030-36617-9_11 |
2019
Annalisa Appice, Nicola Di Mauro, Francesco Lomuscio, Donato Malerba: Empowering Change Vector Analysis with Autoencoding in Bi-temporal Hyperspectral Images. MACLEAN@PKDD/ECML (2019) DOI: http://ceur-ws.org/Vol-2466/paper6.pdf | |
Nicola Di Mauro, Annalisa Appice, Teresa M. A. Basile: Activity Prediction of Business Process Instances with Inception CNN Models. AI*IA: 348-361 (2019) DOI: https://doi.org/10.1007/978-3-030-35166-3_25 | |
Giuseppina Andresini, Annalisa Appice, Nicola Di Mauro, Corrado Loglisci, Donato Malerba: Exploiting the Auto-Encoder Residual Error for Intrusion Detection. EuroS&P Workshops: 281-290 (2019) DOI: https://doi.org/10.1109/EuroSPW.2019.00038 | |
Annalisa Appice, Nicola Di Mauro, Donato Malerba: Leveraging Shallow Machine Learning to Predict Business Process Behavior. SCC: 184-188 (2019) DOI: https://doi.org/10.1109/SCC.2019.00039 | |
Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Donato Malerba: Using Convolutional Neural Networks for Predictive Process Analytics. ICPM: 129-136 (2019) DOI: https://doi.org/10.1109/ICPM.2019.00028 |
2018
Annalisa Appice, Antonietta Lanza, Donato Malerba: Wind Speed Forecasting via Structured Output Learning. SEBD (2018) DOI: http://ceur-ws.org/Vol-2161/paper31.pdf | |
Annalisa Appice, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras: New Frontiers in Mining Complex Patterns - 6th International Workshop, NFMCP 2017, Held in Conjunction with ECML-PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Revised Selected Papers NFMCP@PKDD/ECML Lecture Notes in Computer Science 10785, Springer (2018), ISBN: 978-3-319-78680-3 DOI: https://doi.org/10.1007/978-3-319-78680-3 | |
Sonja Pravilovic, Annalisa Appice, Donato Malerba: Leveraging correlation across space and time to interpolate geophysical data via CoKriging. International Journal of Geographical Information Science 32(1): 191-212 (2018) DOI: https://doi.org/10.1080/13658816.2017.1381338 | |
Annalisa Appice, Antonietta Lanza, Donato Malerba: Handling Multi-scale Data via Multi-target Learning for Wind Speed Forecasting. ISMIS: 357-366 (2018) DOI: https://doi.org/10.1007/978-3-030-01851-1_34 | |
Annalisa Appice, Corrado Loglisci, Donato Malerba: Active learning via collective inference in network regression problems. Inf. Sci. 460: 293-317 (2018) DOI: https://doi.org/10.1016/j.ins.2018.05.028 | |
Annalisa Appice: Towards mining the organizational structure of a dynamic event scenario. J. Intell. Inf. Syst. 50(1): 165-193 (2018) DOI: https://doi.org/10.1007/s10844-017-0451-x | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba: Relational Data Mining in the Era of Big Data. A Comprehensive Guide Through the Italian Database Research: 323-339 (2018) DOI: https://doi.org/10.1007/978-3-319-61893-7_19 |
2017
Marzena Kryszkiewicz, Annalisa Appice, Dominik Slezak, Henryk Rybinski, Andrzej Skowron, Zbigniew W. Ras: Foundations of Intelligent Systems - 23rd International Symposium, ISMIS 2017, Warsaw, Poland, June 26-29, 2017, Proceedings ISMIS Lecture Notes in Computer Science 10352, Springer (2017), ISBN: 978-3-319-60438-1 DOI: https://doi.org/10.1007/978-3-319-60438-1 | |
Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Elio Masciari, Zbigniew W. Ras: New Frontiers in Mining Complex Patterns - 5th International Workshop, NFMCP 2016, Held in Conjunction with ECML-PKDD 2016, Riva del Garda, Italy, September 19, 2016, Revised Selected Papers NFMCP@ECML/PKDD Lecture Notes in Computer Science 10312, Springer (2017), ISBN: 978-3-319-61461-8 DOI: https://doi.org/10.1007/978-3-319-61461-8 | |
Annalisa Appice, Sonja Pravilovic, Donato Malerba, Antonietta Lanza: Sampling Training Data for Accurate Hyperspectral Image Classification via Tree-Based Spatial Clustering. AI*IA: 309-320 (2017) DOI: https://doi.org/10.1007/978-3-319-70169-1_23 | |
Sonja Pravilovic, Massimo Bilancia, Annalisa Appice, Donato Malerba: Using multiple time series analysis for geosensor data forecasting. Inf. Sci. 380: 31-52 (2017) DOI: https://doi.org/10.1016/j.ins.2016.11.001 | |
Annalisa Appice, Pietro Guccione, Donato Malerba: A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data. Pattern Recognition 63: 229-245 (2017) DOI: https://doi.org/10.1016/j.patcog.2016.10.010 |
2016
Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari: Recent advances in mining patterns from complex data. J. Intell. Inf. Syst. 47(1): 1-3 (2016) DOI: https://doi.org/10.1007/s10844-016-0415-6 | |
Corrado Loglisci, Annalisa Appice, Donato Malerba: Collective regression for handling autocorrelation of network data in a transductive setting. J. Intell. Inf. Syst. 46(3): 447-472 (2016) DOI: https://doi.org/10.1007/s10844-015-0361-8 | |
Annalisa Appice, Pietro Guccione, Donato Malerba: Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system. Machine Learning 103(3): 343-375 (2016) DOI: https://doi.org/10.1007/s10994-016-5559-7 | |
Annalisa Appice, Donato Malerba: A Co-Training Strategy for Multiple View Clustering in Process Mining. IEEE Trans. Services Computing 9(6): 832-845 (2016) DOI: https://doi.org/10.1109/TSC.2015.2430327 | |
Annalisa Appice, Pietro Guccione: Exploiting Spatial Correlation of Spectral Signature for Training Data Selection in Hyperspectral Image Classification. DS: 295-309 (2016) DOI: https://doi.org/10.1007/978-3-319-46307-0_19 | |
Anna Maria Crespino, Angelo Corallo, Mariangela Lazoi, Donato Barbagallo, Annalisa Appice, Donato Malerba: Anomaly detection in aerospace product manufacturing: Initial remarks. RTSI: 1-4 (2016) DOI: https://doi.org/10.1109/RTSI.2016.7740644 |
2015
Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras: New Frontiers in Mining Complex Patterns - Third International Workshop, NFMCP 2014, Held in Conjunction with ECML-PKDD 2014, Nancy, France, September 19, 2014, Revised Selected Papers NFMCP Lecture Notes in Computer Science 8983, Springer (2015), ISBN: 978-3-319-17875-2 DOI: https://doi.org/10.1007/978-3-319-17876-9 | |
Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, Carlos Soares, João Gama, Alípio Jorge: Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I ECML/PKDD (1) Lecture Notes in Computer Science 9284, Springer (2015), ISBN: 978-3-319-23527-1 DOI: https://doi.org/10.1007/978-3-319-23528-8 | |
Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, João Gama, Alípio Jorge, Carlos Soares: Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part II ECML/PKDD (2) Lecture Notes in Computer Science 9285, Springer (2015), ISBN: 978-3-319-23524-0 DOI: https://doi.org/10.1007/978-3-319-23525-7 | |
Annalisa Appice, Sonja Pravilovic, Antonietta Lanza, Donato Malerba: Very Short-Term Wind Speed Forecasting Using Spatio-Temporal Lazy Learning. Discovery Science: 9-16 (2015) DOI: https://doi.org/10.1007/978-3-319-24282-8_2 | |
Annalisa Appice, Marco Di Pietro, Claudio Greco, Donato Malerba: Discovering and Tracking Organizational Structures in Event Logs. NFMCP: 46-60 (2015) DOI: https://doi.org/10.1007/978-3-319-39315-5_4 | |
Annalisa Appice, Anna Ciampi, Donato Malerba: Summarizing numeric spatial data streams by trend cluster discovery. Data Min. Knowl. Discov. 29(1): 84-136 (2015) DOI: https://doi.org/10.1007/s10618-013-0337-7 | |
Pietro Guccione, Luigi Mascolo, Annalisa Appice: Iterative Hyperspectral Image Classification Using Spectral-Spatial Relational Features. IEEE Trans. Geoscience and Remote Sensing 53(7): 3615-3627 (2015) DOI: https://doi.org/10.1109/TGRS.2014.2380475 |
2014
Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Elio Masciari, Giuseppe Manco: Mining complex patterns. J. Intell. Inf. Syst. 42(2): 179-180 (2014) DOI: https://doi.org/10.1007/s10844-013-0301-4 | |
Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras: New Frontiers in Mining Complex Patterns - Second International Workshop, NFMCP 2013, Held in Conjunction with ECML-PKDD 2013, Prague, Czech Republic, September 27, 2013, Revised Selected Papers NFMCP Lecture Notes in Computer Science 8399, Springer (2014), ISBN: 978-3-319-08406-0 DOI: https://doi.org/10.1007/978-3-319-08407-7 | |
Fabio Fumarola, Annalisa Appice, Donato Malerba: A Business Intelligence Solution for Monitoring Efficiency of Photovoltaic Power Plants. ISMIS: 518-523 (2014) DOI: https://doi.org/10.1007/978-3-319-08326-1_54 | |
Corrado Loglisci, Annalisa Appice, Donato Malerba: Collective Inference for Handling Autocorrelation in Network Regression. ISMIS: 542-547 (2014) DOI: https://doi.org/10.1007/978-3-319-08326-1_58 | |
Sonja Pravilovic, Annalisa Appice, Donato Malerba: Integrating Cluster Analysis to the ARIMA Model for Forecasting Geosensor Data. ISMIS: 234-243 (2014) DOI: https://doi.org/10.1007/978-3-319-08326-1_24 | |
Annalisa Appice, Donato Malerba: Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering. Data Min. Knowl. Discov. 28(5): 1266-1313 (2014) DOI: https://doi.org/10.1007/s10618-014-0372-z | |
Annalisa Appice, Pietro Guccione, Donato Malerba, Anna Ciampi: Dealing with temporal and spatial correlations to classify outliers in geophysical data streams. Inf. Sci. 285: 162-180 (2014) DOI: https://doi.org/10.1016/j.ins.2013.12.009 | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba: Multi-Relational Model Tree Induction Tightly-Coupled with a Relational Database. Fundam. Inform. 129(3): 193-224 (2014) DOI: https://doi.org/10.3233/FI-2014-969 | |
Sonja Pravilovic, Annalisa Appice, Antonietta Lanza, Donato Malerba: Wind Power Forecasting Using Time Series Cluster Analysis. Discovery Science: 276-287 (2014) DOI: https://doi.org/10.1007/978-3-319-11812-3_24 | |
Annalisa Appice, Anna Ciampi, Fabio Fumarola, Donato Malerba: Data Mining Techniques in Sensor Networks - Summarization, Interpolation and Surveillance. Springer Briefs in Computer Science, Springer: I-XIII, 1- (2014), ISBN: 978-1-4471-5453-2 DOI: https://doi.org/10.1007/978-1-4471-5454-9 | |
Corrado Loglisci, Annalisa Appice, Antonella Montinari, Donato Malerba: Network Regression in Collective Inference Setting. SEBD: 224-235 (2014) | |
Sonja Pravilovic, Annalisa Appice, Antonietta Lanza, Donato Malerba: Mining Cluster-Based Models of Time Series for Wind Power Prediction. SEBD: 9-20 (2014) |
2013
Annalisa Appice, Anna Ciampi, Donato Malerba, Pietro Guccione: Using trend clusters for spatiotemporal interpolation of missing data in a sensor network. J. Spatial Information Science 6(1): 119-153 (2013) DOI: https://doi.org/10.5311/JOSIS.2013.6.102 | |
Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras: New Frontiers in Mining Complex Patterns - First International Workshop, NFMCP 2012, Held in Conjunction with ECML/PKDD 2012, Bristol, UK, September 24, 2012, Revised Selected Papers NFMCP Lecture Notes in Computer Science 7765, Springer (2013), ISBN: 978-3-642-37381-7 DOI: https://doi.org/10.1007/978-3-642-37382-4 | |
Annalisa Appice, Sonja Pravilovic, Donato Malerba, Antonietta Lanza: Enhancing Regression Models with Spatio-temporal Indicator Additions. AI*IA: 433-444 (2013) DOI: https://doi.org/10.1007/978-3-319-03524-6_37 | |
Sonja Pravilovic, Annalisa Appice, Donato Malerba: An Intelligent Technique for Forecasting Spatially Correlated Time Series. AI*IA: 457-468 (2013) DOI: https://doi.org/10.1007/978-3-319-03524-6_39 | |
Annalisa Appice, Sonja Pravilovic, Donato Malerba: Predictive Regional Trees to Supplement Geo-Physical Random Fields. CORES: 259-268 (2013) DOI: https://doi.org/10.1007/978-3-319-00969-8_25 | |
Sonja Pravilovic, Annalisa Appice, Donato Malerba: Process Mining to Forecast the Future of Running Cases. NFMCP: 67-81 (2013) DOI: https://doi.org/10.1007/978-3-319-08407-7_5 | |
Daniela Stojanova, Michelangelo Ceci, Annalisa Appice, Donato Malerba, Saso Dzeroski: Dealing with spatial autocorrelation when learning predictive clustering trees. Ecological Informatics 13: 22-39 (2013) DOI: https://doi.org/10.1016/j.ecoinf.2012.10.006 |
2012
Daniela Stojanova, Michelangelo Ceci, Annalisa Appice, Saso Dzeroski: Network regression with predictive clustering trees. Data Min. Knowl. Discov. 25(2): 378-413 (2012) DOI: https://doi.org/10.1007/s10618-012-0278-6 | |
Annalisa Appice, Donato Malerba, Anna Ciampi: Continuously Mining Sliding Window Trend Clusters in a Sensor Network. DEXA (2): 248-255 (2012) DOI: https://doi.org/10.1007/978-3-642-32597-7_22 | |
Michelangelo Ceci, Annalisa Appice, Herna L. Viktor, Donato Malerba, Eric Paquet, Hongyu Guo: Transductive Relational Classification in the Co-training Paradigm. MLDM: 11-25 (2012) DOI: https://doi.org/10.1007/978-3-642-31537-4_2 | |
Annalisa Appice, Donato Malerba, Antonietta Lanza: Using Geographic Cost Functions to Discover Vessel Itineraries from AIS Messages. MSM/MUSE: 44-62 (2012) DOI: https://doi.org/10.1007/978-3-642-45392-2_3 | |
Pietro Guccione, Anna Ciampi, Annalisa Appice, Donato Malerba, Angelo Muolo: Trend cluster based interpolation everywhere in a sensor network. SAC: 827-828 (2012) DOI: https://doi.org/10.1145/2245276.2245436 | |
Anna Ciampi, Annalisa Appice, Pietro Guccione, Donato Malerba: Integrating Trend Clusters for Spatio-temporal Interpolation of Missing Sensor Data. W2GIS: 203-220 (2012) DOI: https://doi.org/10.1007/978-3-642-29247-7_15 |
2011
Daniela Stojanova, Michelangelo Ceci, Annalisa Appice, Saso Dzeroski: Network Regression with Predictive Clustering Trees. ECML/PKDD (3): 333-348 (2011) DOI: https://doi.org/10.1007/978-3-642-23808-6_22 | |
Anna Ciampi, Annalisa Appice, Donato Malerba, Pietro Guccione: Trend cluster based compression of geographically distributed data streams. CIDM: 168-175 (2011) DOI: https://doi.org/10.1109/CIDM.2011.5949298 | |
Corrado Loglisci, Michelangelo Ceci, Annalisa Appice, Donato Malerba: Discovering process models through relational disjunctive patterns mining. CIDM: 200-207 (2011) DOI: https://doi.org/10.1109/CIDM.2011.5949299 | |
Daniela Stojanova, Michelangelo Ceci, Annalisa Appice, Donato Malerba, Saso Dzeroski: Global and Local Spatial Autocorrelation in Predictive Clustering Trees. Discovery Science: 307-322 (2011) DOI: https://doi.org/10.1007/978-3-642-24477-3_25 | |
Corrado Loglisci, Annalisa Appice, Michelangelo Ceci, Donato Malerba, Floriana Esposito: MBlab: Molecular Biodiversity Laboratory. IRCDL: 132-135 (2011) DOI: https://doi.org/10.1007/978-3-642-27302-5_18 | |
Anna Ciampi, Annalisa Appice, Donato Malerba, Angelo Muolo: Space-Time Roll-up and Drill-down into Geo-Trend Stream Cubes. ISMIS: 365-375 (2011) DOI: https://doi.org/10.1007/978-3-642-21916-0_40 | |
Donato Malerba, Michelangelo Ceci, Annalisa Appice: Relational Mining in Spatial Domains: Accomplishments and Challenges. ISMIS: 16-24 (2011) DOI: https://doi.org/10.1007/978-3-642-21916-0_2 | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba, Antonietta Lanza: Learning and Transferring Geographically Weighted Regression Trees across Time. MSM/MUSE: 97-117 (2011) DOI: https://doi.org/10.1007/978-3-642-33684-3_6 | |
Pietro Guccione, Annalisa Appice, Anna Ciampi, Donato Malerba: Trend Cluster Based Kriging Interpolation in Sensor Data Networks. MSM/MUSE: 118-137 (2011) DOI: https://doi.org/10.1007/978-3-642-33684-3_7 | |
Annalisa Appice, Michelangelo Ceci, Antonio Turi, Donato Malerba: A parallel, distributed algorithm for relational frequent pattern discovery from very large data sets. Intell. Data Anal. 15(1): 69-88 (2011) DOI: https://doi.org/10.3233/IDA-2010-0456 | |
Corrado Loglisci, Michelangelo Ceci, Annalisa Appice, Donato Malerba: Relational Disjunctive Patterns Mining for Discovering Frequent Variants in Process Models. SEBD: 227-238 (2011) |
2010
Annalisa Appice, Michelangelo Ceci, Corrado Loglisci: Discovering Informative Syntactic Relationships between Named Entities in Biomedical Literature. DBKDA: 120-125 (2010) DOI: https://doi.org/10.1109/DBKDA.2010.14 | |
Anna Ciampi, Annalisa Appice, Donato Malerba: Online and Offline Trend Cluster Discovery in Spatially Distributed Data Streams. MSM/MUSE: 142-161 (2010) DOI: https://doi.org/10.1007/978-3-642-23599-3_8 | |
Anna Ciampi, Annalisa Appice, Donato Malerba: Summarization for Geographically Distributed Data Streams. KES (3): 339-348 (2010) DOI: https://doi.org/10.1007/978-3-642-15393-8_39 | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba: Transductive learning for spatial regression with co-training. SAC: 1065-1070 (2010) DOI: https://doi.org/10.1145/1774088.1774310 | |
Michelangelo Ceci, Annalisa Appice, Corrado Loglisci, Donato Malerba: Complex objects ranking: a relational data mining approach. SAC: 1071-1077 (2010) DOI: https://doi.org/10.1145/1774088.1774311 | |
Michelangelo Ceci, Annalisa Appice, Donato Malerba: Transductive Learning for Spatial Data Classification. Advances in Machine Learning I: 189-207 (2010) DOI: https://doi.org/10.1007/978-3-642-05177-7_9 | |
Michelangelo Ceci, Annalisa Appice, Donato Malerba: Time-Slice Density Estimation for Semantic-Based Tourist Destination Suggestion. ECAI: 1107-1108 (2010) DOI: https://doi.org/10.3233/978-1-60750-606-5-1107 | |
Michelangelo Ceci, Annalisa Appice, Donato Malerba, Nicola Schirone, Nicola Davide Traversa, Valerio Valrosso: Suggesting Tourist Destinations by means of Time-Slice Density Estimation. SEBD: 94-105 (2010) | |
Anna Ciampi, Annalisa Appice, Donato Malerba, Giuseppe Saponaro, Domenico Triglione: Clustering Spatio-Temporal Data Streams. SEBD: 230-241 (2010) |
2009
Anna Ciampi, Fabio Fumarola, Annalisa Appice, Donato Malerba: Approximate Frequent Itemset Discovery from Data Stream. AI*IA: 151-160 (2009) DOI: https://doi.org/10.1007/978-3-642-10291-2_16 | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba: An Iterative Learning Algorithm for Within-Network Regression in the Transductive Setting. Discovery Science: 36-50 (2009) DOI: https://doi.org/10.1007/978-3-642-04747-3_6 | |
Fabio Fumarola, Anna Ciampi, Annalisa Appice, Donato Malerba: A Sliding Window Algorithm for Relational Frequent Patterns Mining from Data Streams. Discovery Science: 385-392 (2009) DOI: https://doi.org/10.1007/978-3-642-04747-3_30 | |
Michelangelo Ceci, Annalisa Appice, Corrado Loglisci, Costantina Caruso, Fabio Fumarola, Donato Malerba: Novelty Detection from Evolving Complex Data Streams with Time Windows. ISMIS: 563-572 (2009) DOI: https://doi.org/10.1007/978-3-642-04125-9_59 | |
Michelangelo Ceci, Annalisa Appice, Corrado Loglisci, Costantina Caruso, Fabio Fumarola, Carmine Valente, Donato Malerba: Relational Frequent Patterns Mining for Novelty Detection from Data Streams. MLDM: 427-439 (2009) DOI: https://doi.org/10.1007/978-3-642-03070-3_32 | |
Donato Malerba, Michelangelo Ceci, Annalisa Appice: A relational approach to probabilistic classification in a transductive setting. Eng. Appl. of AI 22(1): 109-116 (2009) DOI: https://doi.org/10.1016/j.engappai.2008.04.005 | |
Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Costantina Caruso, Fabio Fumarola, Michele Todaro, Donato Malerba: A Relational Approach to Novelty Detection in Data Streams. SEBD: 89-100 (2009) | |
Annalisa Appice, Michelangelo Ceci, Vincenzo Rizzi, Marco Romano, Donato Malerba: Spatial Regression in the Transductive Setting. SEBD: 297-304 (2009) | |
Michelangelo Ceci, Annalisa Appice, Giuseppe De Giosa, Gianluigi Dileo, Alessandro Lallo, Donato Malerba: Mining preference relations to rank complex object. SEBD: 313-324 (2009) |
2008
Michelangelo Ceci, Annalisa Appice, Donato Malerba: Emerging Pattern Based Classification in Relational Data Mining. DEXA: 283-296 (2008) DOI: https://doi.org/10.1007/978-3-540-85654-2_28 | |
Antonio Turi, Annalisa Appice, Michelangelo Ceci, Donato Malerba: A Grid-Based Multi-relational Approach to Process Mining. DEXA: 701-709 (2008) DOI: https://doi.org/10.1007/978-3-540-85654-2_61 | |
Annalisa Appice, Anna Ciampi, Antonietta Lanza, Donato Malerba, Antonella Rapolla, Luisa Vetturi: Geographic Knowledge Discovery in INGENS: An Inductive Database Perspective. ICDM Workshops: 326-331 (2008) DOI: https://doi.org/10.1109/ICDMW.2008.120 | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba: Top-Down Induction of Relational Model Trees in Multi-instance Learning. ILP: 24-41 (2008) DOI: https://doi.org/10.1007/978-3-540-85928-4_7 | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba, Savino Saponara: Stepwise Induction of Logistic Model Trees. ISMIS: 68-77 (2008) DOI: https://doi.org/10.1007/978-3-540-68123-6_7 | |
Michelangelo Ceci, Annalisa Appice, Costantina Caruso, Donato Malerba: Discovering Emerging Patterns for Anomaly Detection in Network Connection Data. ISMIS: 179-188 (2008) DOI: https://doi.org/10.1007/978-3-540-68123-6_20 | |
Michelangelo Ceci, Annalisa Appice, Lucrezia Macchia, Donato Malerba: Relational Classification based on Emerging Patterns. SEBD: 45-56 (2008) | |
Antonio Turi, Annalisa Appice, Michelangelo Ceci, Donato Malerba: Distributed Discovery of Multi-Level Approximate Process Patterns. SEBD: 57-68 (2008) |
2007
Annalisa Appice, Antonietta Lanza, Donato Malerba: An Integrated Platform for Spatial Data Mining within a GIS Environment. ICDE Workshops: 507-516 (2007) DOI: https://doi.org/10.1109/ICDEW.2007.4401036 | |
Annalisa Appice, Saso Dzeroski: Stepwise Induction of Multi-target Model Trees. ECML: 502-509 (2007) DOI: https://doi.org/10.1007/978-3-540-74958-5_46 | |
Michelangelo Ceci, Annalisa Appice, Donato Malerba: Discovering Emerging Patterns in Spatial Databases: A Multi-relational Approach. PKDD: 390-397 (2007) DOI: https://doi.org/10.1007/978-3-540-74976-9_38 | |
Annalisa Appice, Michelangelo Ceci, Carlo Malgieri, Donato Malerba: Discovering Relational Emerging Patterns. AI*IA: 206-217 (2007) DOI: https://doi.org/10.1007/978-3-540-74782-6_19 | |
Michelangelo Ceci, Annalisa Appice, Nicola Barile, Donato Malerba: Transductive Learning from Relational Data. MLDM: 324-338 (2007) DOI: https://doi.org/10.1007/978-3-540-73499-4_25 | |
Annalisa Appice, Saso Dzeroski: Inducing Multi-Target Model Trees in a Stepwise Fashion. SEBD: 16-27 (2007) | |
Antonio Varlaro, Annalisa Appice, Antonietta Lanza, Antonio Fittipaldi: On Homogeneity Evaluation and Seed Selection in Clustering Relational Data. SEBD: 471-478 (2007) |
2006
Michelangelo Ceci, Annalisa Appice: Spatial associative classification: propositional vs structural approach. J. Intell. Inf. Syst. 27(3): 191-213 (2006) DOI: https://doi.org/10.1007/s10844-006-9950-x | |
Annalisa Appice, Michelangelo Ceci: Mining Tolerance Regions with Model Trees. ISMIS: 560-569 (2006) DOI: https://doi.org/10.1007/11875604_63 | |
Margherita Berardi, Annalisa Appice, Corrado Loglisci, Pietro Leo: Supporting Visual Exploration of Discovered Association Rules Through Multi-Dimensional Scaling. ISMIS: 369-378 (2006) DOI: https://doi.org/10.1007/11875604_43 | |
Annalisa Appice, Claudia d'Amato, Floriana Esposito, Donato Malerba: Classification of symbolic objects: A lazy learning approach. Intell. Data Anal. 10(4): 301-324 (2006) DOI: http://content.iospress.com/articles/intelligent-data-analysis/ida00252 | |
Annalisa Appice, Floriana Esposito, Donato Malerba: Classifying Aggregated Data: a Symbolic Data Analysis Approach. SEBD: 105-116 (2006) |
2005
Annalisa Appice: Learning relational model trees. (2005) DOI: https://opac.bncf.firenze.sbn.it/bncf-prod/resource?uri=BNI0013541 | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba: Mining Relational Association Rules for Propositional Classification. AI*IA: 522-534 (2005) DOI: https://doi.org/10.1007/11558590_53 | |
Donato Malerba, Michelangelo Ceci, Annalisa Appice: Mining Model Trees from Spatial Data. PKDD: 169-180 (2005) DOI: https://doi.org/10.1007/11564126_20 | |
Donato Malerba, Annalisa Appice, Antonio Varlaro, Antonietta Lanza: Spatial Clustering of Structured Objects. ILP: 227-245 (2005) DOI: https://doi.org/10.1007/11536314_14 | |
Annalisa Appice, Margherita Berardi, Michelangelo Ceci, Donato Malerba: Mining and Filtering Multi-level Spatial Association Rules with ARES. ISMIS: 342-353 (2005) DOI: https://doi.org/10.1007/11425274_36 | |
Annalisa Appice, Paolo Buono: Analyzing Multi-level Spatial Association Rules Through a Graph-Based Visualization. IEA/AIE: 448-458 (2005) DOI: https://doi.org/10.1007/11504894_63 | |
Michelangelo Ceci, Annalisa Appice, Donato Malerba: Propositionalization Through Relational Association Rules Mining. SEBD: 125-136 (2005) | |
Antonio Varlaro, Annalisa Appice, Antonietta Lanza, Donato Malerba, Giuseppe Guarnieri: Relational Clustering with Discrete Spatial Structure. SEBD: 149-160 (2005) |
2004
Annalisa Appice, Michelangelo Ceci, Simon Alan Rawles, Peter A. Flach: Redundant feature elimination for multi-class problems. ICML (2004) DOI: https://doi.org/10.1145/1015330.1015397 | |
Donato Malerba, Floriana Esposito, Michelangelo Ceci, Annalisa Appice: Top-Down Induction of Model Trees with Regression and Splitting Nodes. IEEE Trans. Pattern Anal. Mach. Intell. 26(5): 612-625 (2004) DOI: https://doi.org/10.1109/TPAMI.2004.1273937 | |
Donato Malerba, Annalisa Appice, Michelangelo Ceci: A Data Mining Query Language for Knowledge Discovery in a Geographical Information System. Database Support for Data Mining Applications: 95-116 (2004) DOI: https://doi.org/10.1007/978-3-540-44497-8_5 | |
Michelangelo Ceci, Annalisa Appice, Donato Malerba: Spatial Associative Classification at Different Levels of Granularity: A Probabilistic Approach. PKDD: 99-111 (2004) DOI: https://doi.org/10.1007/978-3-540-30116-5_12 | |
Annalisa Appice, Margherita Berardi, Michelangelo Ceci, Michele Lapi, Donato Malerba, Antonio Turi: Mining interesting spatial association rules: two case studies. SEBD: 86-97 (2004) |
2003
Donato Malerba, Floriana Esposito, Antonietta Lanza, Francesca A. Lisi, Annalisa Appice: Empowering a GIS with inductive learning capabilities: the case of INGENS. Computers, Environment and Urban Systems 27(3): 265-281 (2003) DOI: https://doi.org/10.1016/S0198-9715(02)00024-8 | |
Michelangelo Ceci, Annalisa Appice, Donato Malerba: Comparing Simplification Methods for Model Trees with Regression and Splitting Nodes. ISMIS: 49-56 (2003) DOI: https://doi.org/10.1007/978-3-540-39592-8_8 | |
Michelangelo Ceci, Annalisa Appice, Donato Malerba, Vincenzo Colonna: Multi-relational Structural Bayesian Classifier. AI*IA: 250-261 (2003) DOI: https://doi.org/10.1007/978-3-540-39853-0_21 | |
Michelangelo Ceci, Annalisa Appice, Donato Malerba: Mr-SBC: A Multi-relational Naïve Bayes Classifier. PKDD: 95-106 (2003) DOI: https://doi.org/10.1007/978-3-540-39804-2_11 | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba: Mining Model Trees: A Multi-relational Approach. ILP: 4-21 (2003) DOI: https://doi.org/10.1007/978-3-540-39917-9_3 | |
Michelangelo Ceci, Annalisa Appice, Donato Malerba: Simplification Methods for Model Trees with Regression and Splitting Nodes. MLDM: 20-34 (2003) DOI: https://doi.org/10.1007/3-540-45065-3_3 | |
Annalisa Appice, Michelangelo Ceci, Antonietta Lanza, Francesca A. Lisi, Donato Malerba: Discovery of spatial association rules in geo-referenced census data: A relational mining approach. Intell. Data Anal. 7(6): 541-566 (2003) DOI: http://content.iospress.com/articles/intelligent-data-analysis/ida00146 | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba: MR-SMOTI: A Data Mining System for Regression Tasks Tightly-Coupled with a Relational Database. KDID: 17-27 (2003) | |
Annalisa Appice, Michelangelo Ceci, Floriana Esposito, Donato Malerba: Mining Model Trees with Regression and Splitting Nodes. SEBD: 495-506 (2003) | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba, D. Sacchi: Stepwise Model Tree Induction in a Multi-Relational Framework. SEBD: 281-292 (2003) |
2002
Donato Malerba, Annalisa Appice, Michelangelo Ceci, Marianna Monopoli: Trading-Off Local versus Global Effects of Regression Nodes in Model Trees. ISMIS: 393-402 (2002) DOI: https://doi.org/10.1007/3-540-48050-1_43 | |
Annalisa Appice, Michelangelo Ceci, Donato Malerba: KDB2000: Uno strumento per la scoperta della conoscenza. SEBD: 417-421 (2002) | |
Donato Malerba, Annalisa Appice, Michelangelo Ceci, Nicola Vacca: Mining Classification and Association Rules in Geographical Data with SDMOQL. SEBD: 251-264 (2002) |
2001
Donato Malerba, Annalisa Appice, Antonia Bellino, Michelangelo Ceci, Domenico Pallotta: Stepwise Induction of Model Trees. AI*IA: 20-32 (2001) DOI: https://doi.org/10.1007/3-540-45411-X_3 | |
Antonietta Lanza, Donato Malerba, Francesca A. Lisi, Annalisa Appice, Michelangelo Ceci: Generating Logic Descriptions for the Automated Interpretation of Topographic Maps. GREC: 200-210 (2001) DOI: https://doi.org/10.1007/3-540-45868-9_17 |